期刊文献+

预辅Al及AlN缓冲层厚度对GaN/Si(111)材料特性的影响 被引量:8

Effects of AlN Buffer Layer Thickness and Al Pre-Treatment on Properties of GaN/Si(111) Epilayer
原文传递
导出
摘要 主要研究了采用高温AlN缓冲层外延生长GaN/Si(111)材料的工艺技术。利用高分辨X射线双晶衍射(HRXRD)分析研究了GaN/Si(111)样品外延层的应变状态和晶体质量,通过原子力显微镜(AFM)分析研究了不同厚度的高温AlN缓冲层对GaN外延层的表面形貌的影响。实验结果表明,AlN缓冲层生长前预通三甲基铝(TMAl)的时间、AlN缓冲层的厚度对GaN外延层的应变状态、外延层的晶体质量以及表面形貌都有显著影响。得到最优的预辅Al时间为10s,AlN缓冲层的厚度为40nm。在此条件下外延生长的GaN样品(厚度约为1μm)表面形貌较好,X射线衍射(XRD)双晶摇摆曲线半峰全宽(FWHM)(0002)面和(10-12)面分别为452″和722″。 The technology of epitaxy growth GaN/Si (111) with high temperature AIN buffer is investigated. The state of strain and crystalline quality of GaN epitaxial layer on Si(111) substrate is investigated by high resolution X- ray double crystal diffraction (HRXRD). The influence of the high temperature AIN buffer thickness on the surface morphologies of GaN films is characterized by the atomic force microscopy (AFM). The experimental results show that the A1 pre-treatment time and the thickness of A1N buffer have a significant influence on the crystalline quality, state of strain and surface morphology of GaN. The optimal A1 pre-treatment time is 10 s, and the thickness of A1N buffer is 40 nm. The good surface morphology of GaN epitaxial layer is obtained with the full width at half maximum (FWHM) of GaN (0002) of 452", and (10-12) of 722" by X-ray (XRD) double crystal diffraction.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第1期158-162,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(61176126 61006084) 杰出青年基金(60925017)资助课题
关键词 材料 GAN SI(111) ALN缓冲层 预辅Al 应变状态 materials GaN Si(111) A1N buffer AI pre-treatment state of strain
  • 相关文献

参考文献4

二级参考文献69

  • 1李述体,江风益,范广涵,王立,莫春兰,方文卿.In_xGa_(1-x)N薄膜的弯曲因子及斯托克斯移动研究[J].光学学报,2004,24(6):751-755. 被引量:4
  • 2Nakarnura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Jpn.J. Appl. Phys. 35 L74
  • 3Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W and Chung K S 2004 Nano Lett. 6 1059
  • 4Kim H M, Kang T W and Chung K S 2003 Adv. Mater. 15 567
  • 5Kikuchi A, Kawai M, Tada M and Kishiono K 2004 jpn. J. Appl. Phys. 43 131524
  • 6Neufeld C J, Schaake C, Grundmann M, Fichtenbaum N A, Keller S and Mishra U K 2007 Phys. Status Solidi C 4 1605
  • 7Kuball M, Morrissey F H, Benyoucef M, Harrison I, Korakakis D and Foxon C T 1999 Phys. Status Solidi A 176 355
  • 8Keller S, Schaake C, Fichtenbaum N A, Neufeld C J, Wu Y, McGroddy K, David A, DenBaars S P, Weisbuch C, Speck J S and Mishra U K 2006 J. Appl. Phys. 100 054314
  • 9Chen H S, Yeh D M, Lu Y C, Chen C Y, Huang C F, Tang T Y, Yang C C, Wu C S and Chen C D 2006 Nanotechnology 17 1454
  • 10Demangeot F, Gleize J, Frandon J, Renucci M A, Kuball M, Peyrade D, Manin-Ferlazzo L, Chen Y and Grandjean N 2002 J. Appl. Phys. 91 2866

共引文献11

同被引文献53

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部