期刊文献+

人群变异的分子基础:从单核苷酸多态性到单氨基酸多态性 被引量:4

SNPs and SAPs are Molecular Bases of Population Variation
原文传递
导出
摘要 单核苷酸多态性可以划分为位于基因编码区的SNP和非编码区的SNP两大种类;而在基因编码区的SNP还可以进一步划分为两个亚类:不改变氨基酸序列的同义SNP和改变氨基酸序列的非同义SNP.显然,非同义SNP将导致氨基酸序列的改变,即形成单氨基酸多态性.基于蛋白质组学方法,对亚洲人群血浆样本中的SAP进行了系统研究,发现某一特定SAP在纯合人群和杂合人群中可能与生理或病理性状有着不同的关联.更为重要的是,近期有研究发现,在生物体中广泛存在着RNA序列与DNA序列不一致的现象.导致这种差异的主要原因是在转录水平上存在着规模化的RNA编辑(被称为RNA编辑组,RNA editome).该发现表明,个体拥有的SAP中可能有一部分与基因组SNP无关,而是源于RNA编辑组.进一步推论,可能在翻译水平上存在着不依赖DNA和RNA序列的全新的SAP. There are two types of single nucleotide polymorphisms (SNPs): within coding regions and within non-coding regions. SNPs within coding regions should be further divided into two categories: synonymous and non-synonymous. The non-synonymous SNPs can result in variation of amino-acid sequences, which are single amino-acid polymorphisms (SAPs). Recently, using quantitative proteomic approaches, SAPs in the plasma proteomes were identified at population level for the first time, which showed that heterozygous and homozygous proteins with various SAPs have different associations with particular traits in the population. RNA editome that has been uncovered recently might be a new source of SAPs. In addition, there is another possible source of SAPs that is de hove one independent on both DNA and RNA sequences.
出处 《中国科学:生命科学》 CSCD 北大核心 2013年第1期16-22,共7页 Scientia Sinica(Vitae)
基金 国家重大科学研究计划(批准号:2011CB910200 2011CB910601) 国家自然科学基金(批准号:31130034)资助项目
关键词 单核苷酸多态性(SNPs) 单氨基酸多态性(SAPs) RNA编辑组 蛋白质编辑 中心法则 single nucleotide polymorphisms, single amino-acid polymorphism, RNA editing, protein editing, the central dogma
  • 相关文献

同被引文献34

  • 1殷志祥.蛋白质结构预测方法的研究进展[J].计算机工程与应用,2004,40(20):54-57. 被引量:20
  • 2汪维鹏,倪坤仪,周国华.单核苷酸多态性检测方法的研究进展[J].遗传,2006,28(1):117-126. 被引量:62
  • 3孙侠,殷志祥.蛋白质结构预测的理论方法及阶段[J].生物学杂志,2007,24(1):16-17. 被引量:6
  • 4Blattman A W, Hulme D J, Kinghom B P, et al. A search for associations between major histocompatibility complex restriction fragment length polymorphism bands and resistances Haem on chus contours infection in sheep[J]. Animal Genetics, 1993, 24: 277-282.
  • 5Gao J F, Liu K, Liu H B, et al. A complete DNA sequence map of the ovine major histocompatibility complex[J]. BMC Genomics, 2010, 11(1): 466-474.
  • 6Gruszczyn S J, Brokow S K, Charon K M, et al. Restriction fragment length polymorph ism of exon 2 Ovar-DRB1 gene in polish heath sheep and polish low land sheep[J]. J Appl Genet, 2005, 46(3): 311-314.
  • 7Hedrick P W. Evolutionary genetics of the major histocompatibility complex[J]. Am Nat, 1994, 143: 945-964.
  • 8Hedrick P W. Balancing selection and MHC[J]. Genetic, 1999, 104: 207-214.
  • 9Liu K, Zhang P, Gao J, et al. Closing a gap in the physical map of the ovine major histocompatibility complex[J]. Anim Genet, 2010, 42(2): 204-207.
  • 10Natividad M F, Torres-Villanueva C A, Saloma C P, et al. Super-antigen involvement and susceptibility factors in Kawasaki disease: Profiles of TCR Vβ2+ T cells and HLA-DRB1, TNF-α and ITPKC genes among Filipino patients[J]. Int J Mol Epidemiol Genet, 2013, 4(1): 70-76.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部