期刊文献+

蛋白质丰度调控及整体分布的规律性认识 被引量:2

Insights into the Regular Patterns of Protein Abundance Regulation and Distribution
原文传递
导出
摘要 蛋白质是生命的重要物质基础之一,也是生命活动的主要承担者.蛋白质丰度与其执行的生物学功能息息相关,受基因表达各个过程严格精密的调控.蛋白质丰度的直接影响因素包括相应mRNA初始量、蛋白质合成速率和降解速率.细胞对此3因素的调控将决定蛋白质最终的丰度.得益于定量蛋白质组学的飞速发展,规模化蛋白质丰度数据的产出,使得研究者可致力于发掘蛋白质丰度与其内在性质(如进化特征、结构特征、功能类型等)间规律性的相关性,这对于深入认识生命系统组成的基本原则具有重要意义.本文总结了蛋白质丰度调控及蛋白质丰度与其内在性质相关性的最新研究进展,及对这些规律性现象反映的生物学意义的解读. Protein is one of the fundamental building blocks of life, and its amount in one cell is closely related to biological function. Therefore, protein abundance is regulated strictly at multiple levels of gene expression. The determinants of protein abundance include its corresponding mRNA abundance, the rate of protein synthesis and degradation, so the final cellular protein abundance is determined by the balance of these three factors. Benefitting from the rapid advancement of quantitative proteomics and the outputting of large-scale protein abundance data, we can devote to uncovering the relationship between protein abundance and its intrinsic characteristics (such as evolutionary characteristics, structure characteristics and functional categories), which is of great significance for the deep understanding of the basic composition principle of life systems. Here we summarize the recent research advances of protein abundance regulation, and the regular patterns of the relationship between protein abundance and its intrinsic characteristics. In addition, we also discuss the biological significance underlying them.
出处 《中国科学:生命科学》 CSCD 北大核心 2013年第1期54-62,共9页 Scientia Sinica(Vitae)
基金 国家自然科学基金(批准号:81000192) 国家重点基础研究发展计划(批准号:2011CB910601)资助项目
关键词 蛋白质丰度 丰度调控 蛋白质内在性质 丰度分布规律 protein abundance, regulation of protein abundance, protein intrinsic characteristics, regular pattern of abundancedistribution
  • 相关文献

参考文献2

二级参考文献59

  • 1Wolf, M.Y., Wolf, Y.I., and Koonin, E.V. (2008). Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution. Biol. Direct. 3: 40.
  • 2Wolf, Y.I., Carmel, L., and Koonin, E.V. (2006). Unifying measures of gene function and evolution. Proc. Biol. Sci. 273:1507-1515.
  • 3Wright, S.I., Yah, C.B., Looseley, M., and Meyers, B.C. (2004). Effects of gene expression on molecular evolution in Arabidopsis thaliana andArabidopsis lyrata. Mol. Biol. Evol. 21: 1719-1726.
  • 4Zuekerkandl, E. (1976). Evolutionary processes and evolutionary noise at the molecular level (Ⅰ): Functional density in proteins. J. Mol. Evol. 7: 167-183.
  • 5Akashi, H. (1994). Synonymous codon usage in Drosophila melanogaster Natural selection and translational accuracy. Genetics 136: 927-935.
  • 6Akashi, H., and Gojobori, T. (2002). Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 99: 3695-3700.
  • 7Bloom, J.D., and Adami, C. (2003). Apparent dependence of protein evolution rate on number of interactions is linked to biases in protein-protein interactions data sets. BMC Evol. Biol. 3: 21.
  • 8Bulmer, M. (1987). Coevolution of codon usage and transfer RNA abundance. Nature 325: 728-730.
  • 9Choi, J.K., Kim, S.C., Seo, J., Kim, S., and Bhak, J. (2007). Impact of transcriptional properties on essentiality and evolution rate. Genetics 175: 199-206.
  • 10Coghlan, A., and Wolfe, K.H. (2000). Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16: 1131-1145.

共引文献3

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部