摘要
若图G小去掉任何k条边后所得的图含有生成子图同构于G0,则称G关于G0;是k边容错图,记为k-EFT(G0).若G是k-EFT(G0)图且过数尽可能小,则称G为最优k-EFT(G0)图.设Sn;表示n点星.若一个最优k-EFT(Sn)图的最大度尽可能小,则称为(k,n)一极图本文对于所有的k和n,表征了最优k-EFT(Sn)图和(k,n)一极圈的结构.
Let G and G, be graphs on n nodcs. G is k -edge fault tolerant with respect to Go, denoted by k -EFT(G0), if every graph obtained by removing any k edges from Gcontains a subgraph Go. G is an optimal k - EFT(G0) graph if G is a k - EFT(G0) graph with as few edges as possible. Let Sn denote tlie star on n nodes. A (k, n) - extremal graph is an optimal k - EFT(Sn ) graph whose maximam degree is as small as possible- In this paper the constructure or optimal k-EFT(Sn) graphs and of the (k, n) - extremal graphs is characterized for all k and n.
出处
《漳州师院学报》
2000年第2期8-15,共8页
Journal of ZhangZhou Teachers College(Philosophy & Social Sciences)