期刊文献+

小波配置法中对边界处理的改进 被引量:1

IMPROVEMENT OF THE BOUNDARY TREATMENT FOR THE WAVELET COLLOCATION METHOD
下载PDF
导出
摘要 提出了小波配置法中第二类边界条件的处理方法 ,且引入外小波的概念 ,使该方法进一步改进 ,有效地降低了计算的复杂度 ,并将此方法应用到求解静电场中的二维偏微分方程 。 According to the classic method of weighted residuals,a wavelet collocation method is a new method for the numerical solution of partial differential equations by constructing a wavelet trial function with Daubechies’ compactly supported and orthogonal wavelet,which has the feature of interpolating function,based on the multiresolution analysis.The paper presents the treatment of the second boundary condition in the wavelet collocation method and introduces the concept of external wavelets to improve the method so as to decrease the degrec of complexity of computing efficiently,and the wavelet collocation method is applied to solve 2 dimensional partial differential equations in static electronic field,and satisfactory data are obtained.
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 2000年第3期324-327,共4页 Journal of Tianjin University:Science and Technology
关键词 偏微分方程 小波 配置法 静电场 边界处理 PDE wavelet MRA collocation method collocation point
  • 相关文献

参考文献4

  • 1[1] Bertoluzza S,Naldi G.A wavelet collocation method for the numerical solution of partial differential equation s [J].Applied and Computational Harmonic Analysis 1996,3:1~9.
  • 2[2] Vasilyev Oleg V,Samuel Paolucci,Mihir Sen.A multilevel wavelet collocation method for solving partial differential equations in a finite domain[J].Journal of Computational Physics,1995,120:33~47.
  • 3[3] Kevin Amaratunga,Williams John R,Sam Qian,et al.Wavelet-Galerkin solution for one-dimensional partial differential equations[J].International Journal for Numerical Methods in Engineering,1994,37:2703~2716.
  • 4[4] Ingrid Daubechies.Orthonormal bases of compactly supported wavelets[J].Communications on Pure and Applied Mathematics,1988,XLI:909~996.

同被引文献111

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部