期刊文献+

Load distribution of involute gears along time-varying contact line

Load distribution of involute gears along time-varying contact line
下载PDF
导出
摘要 Base on the theory of energy minimization, a numerical algorithm is established to calculate load distribution, and the relationship curve of spur gear load distribution is obtained, and the load distribution ratio changes from 033 to 067 in double contact zone. This theory is adopted to compute the load distribution of helical gear along time-varying contact line, and the load distribution varies with the instantaneous position of the meshing point and the length of contact line, and the maximum value of load appears at the pitch point. Compared with the load distribution results, the helical gear changes more smoothly than spur gear. The load distribution provides a basis for calculate tooth bending deformation and critical stress. Base on the theory of energy minimization, a numerical algorithm is established to calculate load dis- tribution, and the relationship curve of spur gear load distribution is obtained, and the load distribution ratio changes from 0. 33 to 0. 67 in double contact zone. This theory is adopted to compute the load distribution of helical gear along time-varying contact line, and the load distribution varies with the instantaneous position of the meshing point and the length of contact line, and the maximum value of load appears at the pitch point. Compared with the load distribution results, the helical gear changes more smoothly than spur gear. The load distribution provides a basis for calculate tooth bending deformation and critical stress.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第6期17-20,共4页 哈尔滨工业大学学报(英文版)
基金 Sponsored by the Eleventh Five-years Drive for Basic Research Project
关键词 involute gear potential energy time-varying contact line load distribution 机械零件 联接零件 机械传动机构 控制机件
  • 相关文献

参考文献11

  • 1American Gear Manufacturers Association. Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth[S].Alexandria,VA:American Gear Manufacturers Association,2004.
  • 2American Gear Manufacturers Association. Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur,Helical and Herringbone Gear Teeth[S].Alexandria,VA:American Gear Manufacturers Association,1989.
  • 3International Organization for Standardization. Calculation of Load Capacity of Spur and Helical Gears — Part 2:Calculation of Surface Durability (Pitting)[S].Geneva,Switzerland:International Organization for Standardization,1996.
  • 4International Organization for Standardization. Calculation of Load Capacity of Spur and Helical Gears — Part 3:Calculation of Tooth Bending Strength[S].Geneva,Switzerland:International Organization for Standardization,1996.
  • 5Hayashi K. Load distribution on the contact line of helical gear teeth[J].Bulletin of the JSME,1963,(22):336-343.
  • 6Ajmi M,Velex P. A model for simulating the quasi-static and dynamic behaviour of solid wide-faced spur and helical gears[J].Mechanism and Machine Theory,2005,(02):173-190.
  • 7Arafa M H,Megahed M M. Evaluation of spur gear mesh compliance using the finite element method[J].Proceedings of the Institution of Mechanical Engineers,1999,(06):569-579.
  • 8Shigley J E,Mischke C R. Dise(n)o En ingeniería Mecánica[M].Mexico:Dissertation McGraw-Hill,1990.
  • 9Pleguezuelos M. Modelo de distribución de carga en engranajes cilíndricos de perfil de evolvente[M].Madrid,Spain:Universidad Nacional de Educación a Distancia,2006.
  • 10Pedrero J I,Artés M,Fuentes A. Modelo de distribución de carga en engranajes cilíndricos de perfil de evolvente[J].Revista Iberoamericana de Ingeniería Mecánica,1999,(01):31-44.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部