期刊文献+

广义Hirota-Satsuma偶合KdV方程的四孤子解 被引量:1

Four Soliton solution of Generalized Hirota-Satsuma Coupled Korteweg-de Vries
下载PDF
导出
摘要 首先将偶合KdV方程变换为双线性形式 ,然后假定它的特殊孤子解的形式 ,得到一组方程 ,并通过Mathematica软件来对它进行符号计算 ,求出它的四孤子解 .借助Matlab软件还可作出解的图形 . The coupled KdV equation is tr anslated into bilinear form.After the form of their soliton solution is given some equations are obtained.It is caculated by the Mathematica software and the four-soliton solution is solved.The graphs of solutions are also suggested.
机构地区 中山大学数学系
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2000年第4期15-18,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目! (197710 89)
关键词 偶合KdV方程 四孤子解 广义 双线性形式 coupled KdV equation four-soliton solution
  • 相关文献

参考文献2

  • 1朱思铭,中山大学学报,1998年,37卷,6期,1页
  • 2施齐焉,中山大学学报,1997年,36卷,5期,1页

同被引文献10

  • 1HirotaR,Satsuma J. Soliton solutions of a coupled Korteweg - de Vries equation [J]. Physics Letters A,1981,85(8):407 -408.
  • 2ChowdhuryA R,Basak S, On the complete solution of the Hirota - Satsuma system through thedressing^operator tech-nique [J]. Journal of Physics A: Mathematical and General, 1984,17(16) : L863.
  • 3KonopelchenkoB? Sidorenko J, Strampp W. (1+ 1)- dimensional integrable systems as symmetry constraints of (24-1)- dimensional systems [J]. Physics Letters A,1991, 157(1) : 17 - 21.
  • 4DoddR, Fordy A. On the integrability of a system of coupled KdV equations [J]. Physics Letters A,1982,89(4) : 168-170.
  • 5WilsonG. The affine lie algebra C(l) 2 and an equation of Hirota and Satsuma [J], Physics Letters A,1982,89(7) : 332-334.
  • 6SatsumaJ,Hirota R. A coupled KdV equation is one case of the four - reduction of the KP hierarchy [J], J Phys Soc Ja-pan, 1982, 51(10): 3390 -3397.
  • 7WuY,Geng X,Hu X,et al. A generalized Hirota - Satsuma coupled Korteweg - de Vries equation and Miura trans-formations [J]. Physics Letters A, 1999, 255(4) : 259 - 264.
  • 8FanE. Soliton solutions for a generalized Hirota - Satsuma coupled KdV equation and a coupled MKdV equation [J],Physics Letters A,2001, 282(1) : 18 - 22.
  • 9HirotaR,Nagai A,Nimmo J. The direct method in soliton theory [M]. Cambridge Univ Pr, 2004.
  • 10王晓民,苏道毕力格.广义的Hirota-Satsuma耦合KdV系统的精确行波解(英文)[J].内蒙古工业大学学报(自然科学版),2013,32(1):6-10. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部