期刊文献+

竖炉焙烧过程运行优化控制系统的开发及实验研究 被引量:6

Exploration of operational optimization control system for shaft furnace roasting process and its experiment study
下载PDF
导出
摘要 为解决具有综合复杂动态特性的竖炉焙烧(shaft furnace roasting,SFR)过程运行优化控制问题,基于研制的流程工业一体化运行控制平台,开发了具有可伸缩、可扩展、可复用以及模块化、组态化特点的SFR过程运行优化控制(operational optimization control,OOC)系统.该系统支持MATLAB、动态链接库等多种算法实现方式,并采用非编译融合算法方式实现算法与系统功能模块的解耦.基于开发的OOC系统,建立了具有运行控制层、过程控制层以及虚拟对象层的半实物仿真实验平台,开展了相应的仿真实验研究.结果表明OOC系统在正常工况和局部故障工况下均能取得满意的控制性能. To realize the optimal operation control for the complex shaft-furnace roasting(SFR) process,we develop an operational optimization control(OOC) system on the incorporated operational control platform for process industries.This system is characterized with flexibility,expandability,reusability,openness and modularity.It can support a variety of algorithm realization ways,such as Matlab and Dynamic Link Library(dll).Moreover,algorithm and the system functional modules can be decoupled by embedding algorithm into systems without coupling.Based on this developed OOC system,a hardware-in-loop simulation experiment platform which comprises an operational control layer,a process control layer,and a virtual plant layer has been established for experimental studying.The experiment results show that the OOC system can achieve satisfactory control performances for the SFR process in both normal and partially faulty working conditions.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第12期1565-1572,共8页 Control Theory & Applications
基金 国家自然科学基金资助项目(61104084 61290323) 国家自然科学基金重大国际X合作项目(61020106003) 国家重大基础计划基金资助项目(2009CB320601) 广东省产学研基金资助项目(2010B090400410)
关键词 竖炉焙烧(SFR) 优化控制 运行优化控制(OOC)系统 一体化运行控制平台 半实物仿真实验系统 shaft furnace roasting(SFR) optimal control operational optimization control(OOC) system incorporate operational control platform hardware-in-loop simulation experiment system
  • 相关文献

参考文献15

  • 1CHAI T Y,DING J L. Hybrid intelligent control for optimal operation of shaft furnace roasting process[J].Control Engineering Practice,2011,(03):264-275.
  • 2ZHOU P,CHAI T Y. Grinding circuit control:a hierarchical approach using extended 2-DOF decoupling and model approximation[J].Powder Technology,2011,(03):14-26.
  • 3周平,柴天佑.多变量解耦控制的工业过程运行层次控制方法[J].控制理论与应用,2011,28(2):199-205. 被引量:10
  • 4BLOCH G,SIROU F,EUSTACHE V. Neural intelligent control for a steel plant[J].IEEE Transactions on Neural Networks,1997,(04):910-917.
  • 5WU M,GAO W H,HE C Y. Integrated intelligent control of gas mixing-and-pressurization process[J].IEEE Transactions on Control Systems Technology,2009,(01):68-77.
  • 6WANG Z J,WU Q D,CHAI T Y. Optimal-setting control for complicated industrial processes and its application study[J].Control Engineering Practice,2004,(01):65-74.
  • 7LI H X,GUAN X P. Hybrid intelligent control strategy supervising a DCS-controlled batch process[J].IEEE Control Systems Magazine,2001,(03):36-48.
  • 8CHAI T Y,LIU J X,DING J L. Hybrid intelligent control for hematite high intensity magnetic separating process[J].Measurement and Control,2007,(06):171-175.
  • 9ZHOU P,CHAI T Y,WANG H. Intelligent optimal-setting control for grinding circuits of mineral processing process[J].IEEE Transactions on Automation Science and Engineering,2009,(04):730-743.
  • 10QIN S J,BADGWELL T A. A survey of industrial model predictive control technology[J].Control Engineering Practice,2003,(07):733-764.

二级参考文献56

共引文献35

同被引文献69

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部