期刊文献+

基于多反馈累积综合的新闻图像检索方法

A News Image Retrieval Method on the Basis of Multi-Feedbacks Cumulative and Synthesizing Method
下载PDF
导出
摘要 通过分析新闻图像检索的应用特点,提出了一种多反馈、累积的图像检索方法.在贝叶斯分类模型的基础上,构造图像特征的分类方法,进一步得到图像的分类概率;设计多个反馈指标上的概率综合公式及先验概率的累积修正方法.实验结果表明,所提出的算法是有效的,并具有较好的性能. According to application features of news image retrieval, a multi-feedbacks cumulative and synthesizing retrieval method is proposed. On the basis of Bayesian theory, the classifying method about image features is constructed. Then, the classifying probability of image can be gained. Through constructing probability synthesizing formula about multi-feedbacks and cumulative updating formula about prior probability, a relevance feedback algorithm based on Bayesian theory is proposed. Experimental results show that the proposed algorithm is effective and has higher performance.
作者 赵娟
出处 《宁夏大学学报(自然科学版)》 CAS 2012年第4期346-349,共4页 Journal of Ningxia University(Natural Science Edition)
基金 天津市应用基础及前沿技术研究计划资助项目(10JCYBJC26600) 天津师范大学教育科学研究基金资助项目(52WT1114)
关键词 图像检索 相关反馈 贝叶斯模型 多反馈综合 累积反馈 image retrieval relevance feedback Bayesian model multi-feedbacks synthesizing cumulative feedback
  • 相关文献

参考文献11

  • 1VELTKAMP R C,TANASE M. Content-based image retrieval systems:a survey[J].The Knowledge Engineering Review Archive,2003,(02):95-145.
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3RUI Y,HUNAG T S,ORTEGA M. Relevance feedback:a power tool in inter active content based image retrieval[J].IEEE Transactions on Circuits and Systems For Video Technology,1998,(05):644-655.doi:10.1109/76.718510.
  • 4DATTA R,JOSHI D,LI Jia. Image retrieval:ideas,influences,and trends of the new age[J].ACM Computing Surveys,2008,(02):1-60.
  • 5CHENG Jian,WANG Kongqiao. Active learning for image retrieval with Co SVM[J].Pattern Recognition,2007,(01):330-334.doi:10.1016/j.patcog.2006.06.005.
  • 6YIN Pengyeng,BHAUN B,CHANG Kuangcheng. Integrating relevance feedback techniques for image retrieval using reinforcement learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(10):1536-1551.doi:10.1109/TPAMI.2005.201.
  • 7王伟蔚,张国鹏,邱顶,廖琪梅,陈武凡,卢虹冰.基于DICOM文本与内容的医学图像检索系统研究[J].计算机工程与设计,2011,32(3):1014-1018. 被引量:14
  • 8赵娟.图像信息管理系统设计[J]天津师范大学学报,2004(05):55-57.
  • 9邬俊,林正奎,鲁明羽,黄会.基于不对称贝叶斯学习的图像检索相关反馈算法研究[J].南京大学学报(自然科学版),2009,45(5):604-612. 被引量:5
  • 10COX I J,MILLER M,MINKA T P. The Bayesian image retrieval system,pichunter:theory,implementation,and psychophysical experiments[J].IEEE Transactions on Image Processing,2000,(01):20-37.doi:10.1109/83.817596.

二级参考文献99

  • 1谭晓阳,孙正兴,张福炎.交互式图像检索中的相关反馈技术研究进展[J].南京大学学报(自然科学版),2004,40(5):639-648. 被引量:14
  • 2吴洪,卢汉清,马颂德.基于内容图像检索中相关反馈技术的回顾[J].计算机学报,2005,28(12):1969-1979. 被引量:52
  • 3Datta R, Joshi D, Li J, et al. Image retrieval Ideas, influences, and trends of the new age ACM Computing Surveys, 2008, 40 ( 2 ) 1-60.
  • 4Zhou X, Huang T S. Relevance feedback in image retrieval: A comprehensive review. ACM Multimedia Systems. 2003, 8: 536-544.
  • 5Tong S, Chang E. Support vector machine active learning for image retrieval. ACM International Conference on Multimedia, 2001, 107-118.
  • 6Tao D, Tang X, Li X, etal. Asymmetric bagging and random subspace for support vector machines based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1088- 1099.
  • 7Hoi S C H, Jin R, Zhu J, et al. Semi-supervised SVM batch mode active learning for image retrieval. IEEE Conference on Computer Vision and Pattern Recognition, 2008,1-7.
  • 8Wu X, Kumar V, Quinlan J, etal. Top 10 algorithms in data mining. Knowledge Information Systems, 2008, 14: 1-37.
  • 9Cox I J, Miller M, Minka T P, et al. The Bayesian image retrieval system, PicHunter:Theory, implementation, and psychophysieal experiments. IEEE Transactions on Image Processing, 2000, 9(1): 20-37.
  • 10Duan L, Gao W, Zeng W, etal. Adaptive relevance feedback based on Bayesian inference for image retrieval. Signal Processing, 2005, 85 (2) : 395-399.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部