摘要
通过分析新闻图像检索的应用特点,提出了一种多反馈、累积的图像检索方法.在贝叶斯分类模型的基础上,构造图像特征的分类方法,进一步得到图像的分类概率;设计多个反馈指标上的概率综合公式及先验概率的累积修正方法.实验结果表明,所提出的算法是有效的,并具有较好的性能.
According to application features of news image retrieval, a multi-feedbacks cumulative and synthesizing retrieval method is proposed. On the basis of Bayesian theory, the classifying method about image features is constructed. Then, the classifying probability of image can be gained. Through constructing probability synthesizing formula about multi-feedbacks and cumulative updating formula about prior probability, a relevance feedback algorithm based on Bayesian theory is proposed. Experimental results show that the proposed algorithm is effective and has higher performance.
出处
《宁夏大学学报(自然科学版)》
CAS
2012年第4期346-349,共4页
Journal of Ningxia University(Natural Science Edition)
基金
天津市应用基础及前沿技术研究计划资助项目(10JCYBJC26600)
天津师范大学教育科学研究基金资助项目(52WT1114)
关键词
图像检索
相关反馈
贝叶斯模型
多反馈综合
累积反馈
image retrieval
relevance feedback
Bayesian model
multi-feedbacks synthesizing
cumulative feedback