摘要
设X,Y任意的非空全序集合,OT(X,Y)是X到Y的全体保序映射构成的集合,θ是Y到X的一个确定的保序映射.α,β∈OT(X,Y)定义:α°β=αθβ,这里αθβ表示一般映射的合成,则OT(X,Y)关于运算构成一个半群,称为保序的夹心半群,记为OT(X,Y;θ).当X,Y都是有限集合且X>1,Y>1时称保序夹心半群OT(X,Y;θ)为有限保序夹心半群.主要讨论有限保序夹心半群正则元、幂等元的一些特殊性质.
Let X and Y be arbitrary nonempty order sets, OT(X, Y) be the set of mappings from X to Y, θ be ar- bitrary but fixed mapping from Y to X for any V a,BE OT(X, Y) , the operation in OT( X, Y) is defined by a~/3 = a0/3 ,where a0/3 is the production of mappings. Then OT(X, Y) forms a semigroup called sandwich semigroup and de- noted by OT(X, Y) . The sandwich semigroup OT( X, Y) is called finite preserving order sandwich semigroup when both X and Y are finite sets and { X } 〉 1, { Y } 〉 1. In this paper, we discuss the regulations and idempotent proper- ties of OT( X, Y;θ)
出处
《贵州师范学院学报》
2012年第12期10-12,共3页
Journal of Guizhou Education University
关键词
有限保序夹心半群OT(X
Y
θ)
正则元
幂等元
finite ordered- preserving sandwich semigroup OT( X, Y
θ)
regulations
idempotents