期刊文献+

OT(X,Y;θ)的正则元、幂等元的一些特殊性质 被引量:1

Regulations and idempotent properties for finite ordered-preserving sandwich semigroup OT(X,Y;θ)
下载PDF
导出
摘要 设X,Y任意的非空全序集合,OT(X,Y)是X到Y的全体保序映射构成的集合,θ是Y到X的一个确定的保序映射.α,β∈OT(X,Y)定义:α°β=αθβ,这里αθβ表示一般映射的合成,则OT(X,Y)关于运算构成一个半群,称为保序的夹心半群,记为OT(X,Y;θ).当X,Y都是有限集合且X>1,Y>1时称保序夹心半群OT(X,Y;θ)为有限保序夹心半群.主要讨论有限保序夹心半群正则元、幂等元的一些特殊性质. Let X and Y be arbitrary nonempty order sets, OT(X, Y) be the set of mappings from X to Y, θ be ar- bitrary but fixed mapping from Y to X for any V a,BE OT(X, Y) , the operation in OT( X, Y) is defined by a~/3 = a0/3 ,where a0/3 is the production of mappings. Then OT(X, Y) forms a semigroup called sandwich semigroup and de- noted by OT(X, Y) . The sandwich semigroup OT( X, Y) is called finite preserving order sandwich semigroup when both X and Y are finite sets and { X } 〉 1, { Y } 〉 1. In this paper, we discuss the regulations and idempotent proper- ties of OT( X, Y;θ)
出处 《贵州师范学院学报》 2012年第12期10-12,共3页 Journal of Guizhou Education University
关键词 有限保序夹心半群OT(X Y θ) 正则元 幂等元 finite ordered- preserving sandwich semigroup OT( X, Y θ) regulations idempotents
  • 相关文献

参考文献8

  • 1裴惠生,翟红村,金勇.夹心半群 T(X,Y,θ)上的最小真同余[J].数学进展,2004,33(3):284-290. 被引量:7
  • 2裴惠生,翟红村,金勇.夹心半群S(X,Y,θ)上的α-同余[J].数学学报(中文版),2004,47(2):371-378. 被引量:7
  • 3G.Kowol,H.Mirseh. Naturally ordered transforma- tion semigroups[J].Monatshefte Fur Mathematik,1986.115-138.
  • 4J.B.Hiekey. semigroup under a sandwich operation[J].Proceedings of the Edinburgh Mathematical Society,1975.371-382.
  • 5K.D.Magill ,Jr,S Subbiah. Green' s relations for regu- lar elements of sandwich semigroups,( I )general results[J].Proceedings of the London Mathematical Society,1975,(30):194-210.
  • 6裴惠生;吴勇福.保持两个等价关系的正则性和格林关系[J]信阳师范学院学报,2004(02):161-179.
  • 7马敏耀,张传军,林屏峰.有限夹心半群T(X,Y;θ)的正则性与Green关系[J].贵州师范大学学报(自然科学版),2007,25(1):81-84. 被引量:2
  • 8Howei J M. An Introduction to semigroup Theory[M].London,UK:Academic Press,1976.

二级参考文献33

  • 1Hofmann K. H., Magill K. D. Jr., The smallest proper congruence on S(X), Glasgow Math. J., 1988, 30(2):301-313.
  • 2Pei H. S., Zhai H. C., Jin Y., The smallest proper congruence on the sandwich semigroups T(X, Y, θ), to appear.
  • 3Pei H. S., The α-congruences on S(X) and the S-equivalences on X, Semigroup Froum, 1993, 47(1): 48-59.
  • 4Symons J. S. V., On a generalization of the transformation semigroup, J. Aust. Math. Soc. Set. A, 1975,19(1): 47-61.
  • 5Howie J. M., Fundamentals of semigroup theory, New York: Oxford University Press, 1995.
  • 6Pei H. S., Equivalence, α-semigroups and α-congruences, Semigroup Forum, 1994, 49(1): 49-58.
  • 7Pei H. S., Xu Y. Q., α-congrungces on variants of S(X), (Ⅰ) General results, J. Xinyang Teachers College,1996, 9(2): 106-115.
  • 8Pei H. S., Xu Y. Q., α-congruences on variants of S(X), (Ⅱ) a-congruences, J. Xinyang Teachers College,1996, 9(3): 217-225.
  • 9Magill K. D. Jr,. Semigroup structures for families of functions, (Ⅰ) some Homomorphism theorems, J. Aust.Math. Sloc., 1967, 7(1): 81-94.
  • 10Magill K. D. Jr., Semigroup structures for families of functions, (Ⅱ) Continuous fuctions, J. Aust. Math.Soc., 1967, 7(1): 95-107.

共引文献6

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部