期刊文献+

一种用于模式分类有监督的模糊ART神经网络 被引量:4

A Supervised Fuzzy ART Neural Network for Pattern Classification
下载PDF
导出
摘要 探讨了一种将有监督学习机制融合到模糊ART网络构成一个有监督的模糊ART神经网络模型.这种网络能同时处理有监督和无监督学习问题,并具有积累和增加网络学习的能力.对该网络进行了滚动轴承检测数据模式分类实验,并与BP网络进行了比较性实验.结果表明:该网络具有良好模式分类能力和较好的可塑性. A new neural network model that incorporates a supervised mechanism into a fuzzy ART is investigated. The model can cope with supervised learning and unsupervised learning simultaneously, and has the ability of incremental learning. A few experiments of bearing pattern classification prove pefformance of the model and by comparing pefformance of the model with BP model. The results of experiments indicate tha the model has the ability of pattem classification and flexibility.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2000年第3期262-265,共4页 Journal of University of Science and Technology Beijing
关键词 模式识别 模糊ART神经网络 模式分类 有监督学习 neural network fuzzy theory pattern recognition
  • 相关文献

参考文献4

  • 1汪培庄,模糊系统理论与模糊计算机,1996年
  • 2潘紫微,中国机械工程,1994年,5期,116页
  • 3杨行峻,人工神经网络,1992年
  • 4曹焕光,人工神经元网络理论,1992年

同被引文献20

  • 1仝朝阳,石教英.一种面向模式分类的修正的ART1神经网络[J].计算机学报,1995,18(9):671-677. 被引量:7
  • 2Samanta B, Al-Balushi K R, Al-Araimi S A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng Appl Artiflntell, 2003, 16:657.
  • 3Mallat S G, Zhang Z F. Matching pursuit with time-frequency dictionaries. IEEE Trans Signal Process, 1993, 41 (12) : 3397.
  • 4Fan H, Meng Q F, Zhang Y Y, et al. Matching pursuit based on nonparametric waveform estimation. ~igital Signal Process, 2009, 19:583.
  • 5Engan K, Aase S O, Husoy J H. Method of optimal directions for framedesign. 1EEE Int ConfA t Speech Signal Process, 1999, 5:2443.
  • 6Engan K, Aase S O, Husoy J H. Multi-frame compression: theory and design. Signal Process, 2000, 80:2121.
  • 7Zhang J F, Huang Z C. Kernel fisher discriminant analysis for bearing fault diagnosis. IEEE Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005: 3216.
  • 8Yang H Y, Mathew J, Ma L. Fault diagnosis of rolling element bearings using basis pursuit. Mech Syst Signal Process, 2005, 19 (2) : 341.
  • 9Yang B S, Hwang W W, Kim D J, et al. Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines. Mech Syst Signal Process, 2005, 19:371.
  • 10[1]Paul S Wu,Ming Li. Supervised and unsupervised fuzzy-adaptive Hamming net[M].Pattern Recognition,1999,32:1801-1806.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部