期刊文献+

核方法及其在模拟电路故障诊断中的研究进展 被引量:9

Advance in kernel methods and its application in analog circuit fault diagnosis
下载PDF
导出
摘要 模拟电路故障诊断对电子设备的可靠性具有重要意义。由于模拟电路响应的连续性、非线性和元件参数容差的存在以及模拟电路故障形式的多样性和复杂性,使得模拟电路故障诊断一直是电路研究领域的热点与难点问题。首先对传统故障诊断方法和现代故障诊断方法的基本原理进行了介绍,并对以上方法的特点和不足之处进行了总结与分析。此后从基本原理、研究现状等方面对基于核方法的模拟电路故障诊断进行了详细的介绍与分析。最后对核方法应用于模拟电路故障诊断方面时存在的问题及发展方向进行了探讨。 Analog circuit fault diagnosis is important to the reliability of electronic system. Due to the inherent characteristics of analog circuit,such as continuity of its response,nonlinearity, the existence of component tolei'ance as well as the diversity and complexity of fault types of the circuit,it is difficult to achieve the expected diagnostic results in practical engineering. Fault diagnosis for analog circuit has always been the hotspot and the difficult spot in the circuit field. The brief introduction of traditional methods and modern methods was given first, and the characteristic was summarized and analyzed on the basis. According to the deficiency of modern methods, analog circuit fault diagnosis based on kernel methods were given,the basic principle and research advance of kernel methods were analyzed in detail at the same time. Advance of kernel methods in analog circuit fault diagnosis were introduced, the problem in application and the research directions were discussed at last.
出处 《电子测量技术》 2013年第1期91-96,共6页 Electronic Measurement Technology
关键词 模拟电路 故障诊断 核方法 analog circuit fault diagnosis kernel methods
  • 相关文献

参考文献37

二级参考文献192

共引文献280

同被引文献66

  • 1樊立萍,徐阳.基于KPCA的污水处理过程监视[J].仪器仪表学报,2005,26(z1):157-158. 被引量:2
  • 2张伟,许爱强,陈振林.模拟电路节点电压灵敏度权序列故障字典法[J].电子测量与仪器学报,2006,20(4):46-49. 被引量:20
  • 3韩宝如,孟玲玲.一种基于小波神经网络的模拟电路故障诊断方法[J].电子测量技术,2006,29(6):14-16. 被引量:6
  • 4陈冰,尹禄,梁伟锋.基于BP网络的容差模拟电路故障诊断研究[J].电子测量技术,2007,30(5):61-63. 被引量:5
  • 5KIM K I, FRANZ M O, SCHOLKOPF S. Iterative kernel principal component analysis for image modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (9) : 1351-1366.
  • 6ADDI H, WlLLIANMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews:Comput- ational Statistics, 2010,2 (4) : 433-459.
  • 7BHARATH K S, DAVID A T, GERT R G L. A majorization-minimization approach to the sparse generalized eigenvalue problem [J]. Machine Learning, 2011,85(1-2) :3-39.
  • 8CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted el minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14 ( 5-6 ) : 877-905.
  • 9LAWRENCE N. Probabilistie non-linear principal component analysis with Gaussian process latent variable models[J]. The Journal of Maehine Learning Research,2005 (6) : 1783-1816.
  • 10BERKOWITZ R S. Conditions for network-element-value solvability [ J ]. Circuit Theory, IRE Transactions on, 1962, 9( 1 ) : 24-29.

引证文献9

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部