期刊文献+

基于压缩传感的单点太赫兹成像 被引量:3

Single-pixel Terahertz Imaging Via Compressed Sensing
下载PDF
导出
摘要 太赫兹(Terahertz,1THz=1012Hz)波通常是指频率在0.1THz~10THz(波长在3mm~30um)范围内的电磁辐射.随着THz相关技术的发展,THz成像技术在更多领域将显示其更大的实用价值.在本文中,我们对物体进行单点THz成像,此系统的核心是一个单像素探测器和一系列随机掩膜板.成像的方式是基于压缩传感理论(CS).此理论主要包括信号稀疏表示,编码测量和重建算法三部分.其核心思想是将压缩与采样合并进行,首先采集图像的非自适应线性投影(测量值),然后根据相应重构算法由测量值重构原始图像.此系统通过测量图像和单一掩膜板的内积来得到单一THz强度值,最后得到一系列与掩膜板数目相同的测量值.CS理论可以从比N2少得多的测量值中来重建一幅N×N的图像,从而缩短成像时间.这种单点成像系统消除了对物体或THz波束进行光栅扫描的必要,不但提高了成像速度,而且保持了单像素探测的高灵敏度.我们利用连续THz波源—返波振荡器来进行实验并得到了初步实验结果. With the development of terahertz related technologies, the terahertz imaging technology will show its greater practical value in more areas. In this paper, we describe a terahertz imaging system that uses a single pixel detector in combination with a series of random masks to enable high-speed image acquisition. The image formation is based on the theory of compressed sensing (CS). When the scene under view is compressible by an algorithm like JPEG or JPEG2000, the CS theory enables us to stably reconstruct an image of the scene from fewer measurements than the number of reconstructed pixels. In this manner, we achieve sub-Nyquist image acquisition. CS theory mainly includes signal sparse representation, encoding measurement and reconstruction algorithm. CS combines sampling and compression into a single non-adaptive linear measurement process. Rather than measuring pixel samples of the scene under view, we measure inner products between the scene and a set of test functions. CS permits the reconstruction of a N-by-N pixel image using much fewer than N2 measurements. This approach eliminates the need for raster scanning of the object or the terahertz beam, while maintaining the high sensitivity of a single-element detector. We demonstrate the concept using a backward wave oscillator (BWO) which is a continuous-wave terahertz source and get a preliminary test result.
出处 《首都师范大学学报(自然科学版)》 2012年第6期14-18,共5页 Journal of Capital Normal University:Natural Science Edition
关键词 太赫兹 返波振荡器 压缩传感 单像素成像 Terahertz, BWO, Compressed sensing, Single-pixel imaging.
  • 相关文献

参考文献15

  • 1Fattinger C,Grischkowsky D. Terahertz beams[J].Applied Physics Letters,1989.490.
  • 2Nicholas Karpowicz,Hua Zhong,Cunlin Zhang. Compact continuous-wave subterahertz system for inspection applications[J].Applied Physics Letters,2005,(5):1.
  • 3Nicholas Karpowicz,Hua Zhong,Jingzhou Xu. Non-Destructive Sub-THz CW Imaging[J].Proceedings of Spie,2005.5727.
  • 4Chan W L,Deibel J,Mittleman D M. Imaging with terahertz radiation[J].Reports on Progress in Physics,2007.1325-1379.
  • 5David L,Donoho. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 6Candés E. Compressive sampling[A].Zürich,Switzerland:European Mathematical Society Publishing House,2006.
  • 7Donoho D. Compressed sensing[J].IEEE Transactions on Information Theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 8Candes E,Romberg J,Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,(02):489-509.doi:10.1109/TIT.2005.862083.
  • 9Baraniuk R. Compressive sensing[J].IEEE Signal Processing Magazine,2007,(04):118-121.doi:10.1109/MSP.2007.4286571.
  • 10Olshausen B A,Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,(6583):607-609.

二级参考文献31

  • 1D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306.
  • 2M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598.
  • 3I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457.
  • 4T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274.
  • 5A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161.
  • 6E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509.
  • 7E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308.
  • 8S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415.
  • 9E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215.
  • 10S J Kim, K Koh, M Lustig, S Boyd, D Gorinevsky. A interiorpoint method for large-scale ly-regularized least-squares problems with applications in signal processing and statistics[J]. Journal of Machine Learning Research, 2007,7 ( 8 ) : 1519 - 1555.

共引文献120

同被引文献42

  • 1Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly in- complete frequency information[J]. IEEE Transactions on lnformation Theory, 2006, 52(2): 489-509.
  • 3Takhar D, Bansal V, Wakin M, et al. A compressed sensing camera: New theory and an implementation us- ing digital micromirrors [C]//SPIE Electronic Imaging: Computational Imaging. San Jose, USA, 2006.
  • 4Wakin M B, Laska J N, Duarte M F, et al. An archi- tecture for compressive imaging[C]//Proceedings of IEEE International Conference on Image Processing. At- lanta, USA, 2006: 1273-1276.
  • 5Chan Wai Lam, Charan Kriti, Takhar Dharmpal, et al. A single-pixel terahertz imaging system based on com- pressed sensing [J]. Applied Physics Letters, 2008, 93(12): 121105.
  • 6Ma Jianwei. Single-pixel remote sensing [J]. IEEE Geo- science and Remote Sensing Letters, 2009, 6 (2) : 199- 203.
  • 7Ma Jianwei. A single-pixel imaging system for remote sensing by two-step iterative curvelet thresholding[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4) : 676-680.
  • 8Fu Wenxing, Zhu Supeng, Zhang Kai. Conceptual research on application of single pixel infrared imaging to missile guidance [C]//Asia-Pacific Conference on Infor- mationProcessing. Xi'an, China, 2009: 185-188.
  • 9Filipe M, Francisco M A, Miguel V C, et al. Active illumination single-pixel camera based on compressive sensing[J].AppliedOptics, 2011, 50(4): 405-414.
  • 10Candes E J, Romberg J K, Tao T. Stable signal recov- ery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59(8) : 1207-1223.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部