期刊文献+

模糊完备格上的模糊同余关系 被引量:1

Fuzzy congruence relations on fuzzy complete lattices
下载PDF
导出
摘要 在模糊完备格中引入模糊完备格同余关系的概念,讨论了模糊完备格同余与模糊闭包算子之间的关系.证明了一个模糊完备格上的模糊同余关系之集构成的模糊偏序集模糊序同构于其上的模糊闭包算子之集构成的模糊偏序集.给出了模糊完备格同余的商的概念,证明了任一模糊完备格满同态的像都模糊序同构于由该模糊完备格同态所诱导的同余关系的商. The concept of fuzzy complete lattice congruence relation on fuzzy complete lattice is defined, and the relation between fuzzy complete lattice congruence and fuzzy closure operator is discussed. It is proved that in a fuzzy complete lattice, the fuzzy poset of fuzzy complete lattice congruence relations is fuzzy order isomorphic to the fuzzy poset of fuzzy closure operators. The quotient of a fuzzy complete lattice congruence relation is defined. It is also proved that the image of a fuzzy complete lattice under a surjective fuzzy complete lattice morphism is fuzzy order isomorphic to the quotient of the fuzzy complete lattice congruence relation induced by the fuzzy complete lattice morphism.
作者 刘敏 赵彬
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期5-9,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11171196 10871121)
关键词 模糊偏序集 模糊完备格 模糊完备格同余 模糊闭包算子 fuzzy poser fuzzy complete lattice fuzzy complete lattice congruence relation fuzzy closure operator
  • 相关文献

参考文献12

  • 1Wagner K R. Solving recursive domain equations with enriched categories[D].Pittsburgh:Carnegie-Mellon University,School of Computer Science,1994.
  • 2Wagner K R. Liminf convergence in Ω-categories[J].Theoretical Computer Science,1997,(1/2):61-104.doi:10.1016/S0304-3975(96)00223-X.
  • 3Lai Hongliang,Zhang Dexue. Many-valued complete distributivity[DB/OL].http://arxiv.org/abs/math/0603590,2012.
  • 4Lai Hongliang,Zhang Dexue. Complete and directed complete Ω-categories[J].Theoretical Computer Science,2007,(1/3):1-25.
  • 5Fan Lei. A new approach to quantitative domain theory[J].Electronic Notes in Theoretical Computer Science,2001.77-87.
  • 6Yao Wei. Quantitative domains via fuzzy sets:Part Ⅰ:continuity of fuzzy directed complete posets[J].Fuzzy Sets and Systems,2010,(07):983-987.
  • 7Zhang Qiye,Fan Lei. Continuity in quantitative domains[J].Fuzzy Sets and Systems,2005,(01):118-131.
  • 8Zhang Qiye,Xie Weixian,Fan Lei. Fuzzy complete lattices[J].Fuzzy Sets and Systems,2009,(16):2275-2291.
  • 9Bělohlávek R. Fuzzy relational systems:Foundations and principles[M].New York:Kluwer Academic Publishers,Plenum Publishers,2002.203-213.
  • 10郑崇友;樊磊;崔宏斌.Frame与连续格[M]北京:首都师范大学出版社,199484-91.

同被引文献9

  • 1Mulvey C J.&[J].Rendiconti del circolo matematico di palermo Ⅱ,1986,12(2):99-104.
  • 2Rosenthal K I.Quantales and their applications[M].New York:Longman Scientific and Technical,1990.
  • 3Petr Hájek.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publishers,1998.
  • 4Zhang Qiye,Fan Lei.Continuity in quantitative domains[J].Fuzzy Sets and Systems,2005,154(1):118-131.
  • 5Yao Wei.Quantitative domains via fuzzy sets:Part Ⅰ:Continuity of fuzzy directed complete poset[J].Fuzzy Sets and Systems,2010,161(7):983-987.
  • 6Yao Wei,Lu Lingxia.Fuzzy Galois connections on fuzzy posets[J].Mathematical Logic Quarterly,2009,55 (1):105-112.
  • 7Stubbe I.Categorical structures enriched in a quantaloid:tensored and cotensored categories[J].Theory and Applications of Categories,2006,16 (14):283-306.
  • 8Lai Hongliang,Zhang Dexue.Concept lattice of fuzzy contexts:formal concept analysis vs.rough set theory[J].International Journal of Approximate Reasoning,2009,50(5):696-707.
  • 9Bělochávek R.Fuzzy relational systems:foundations and principles[M].New York:Kluwer Academic Publishers,Plenum Publishers,2002:203-213.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部