期刊文献+

具有阶段结构的捕食-食饵模型的定性分析 被引量:4

Qualitative analysis on a predator-prey model with stage structure
下载PDF
导出
摘要 研究了一类捕食者具有阶段结构的捕食-食饵模型.运用抛物型方程组的比较原理得到了整体解的存在性和半平凡解的全局稳定性.针对稳态问题,给出正解的先验估计及非常数正解的不存在性,同时利用分歧理论研究了一维空间下在3个常数平衡态处的局部分歧、局部分歧解的近似结构以及非常数正解的存在性. A predator-prey model with stage structure is discussed. Based on the comparison principle for parabolic equations, the global existence of solutions and the global asymptotical stability of a semitrival solution are obtained. For the corresponding steady-state problem, a prior estimate of positive solution and a nonexistence result for non-constant positive solution are given. By using the bifurcation theorem, it is proved that the local bifurcation occurs at the three constant solutions in one dimension case, and the structure of solutions near the bifurcation point and the existence of non-constant positive solutions are discussed.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期10-14,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10971124) 教育部高等学校博士点专项基金资助项目(200807180004)
关键词 捕食-食饵 分歧理论 阶段结构 predator-prey bifurcation theory stage structure
  • 相关文献

参考文献2

二级参考文献17

  • 1Yang Kuang, Freedman H I. Uniqueness of limit cycles in Gause-type models of predator-prey systems [ J ]. Mathematical Biosciences, 1988, 88(1 ) : 67-84.
  • 2Peng Rui, Wang Mingxin. On multiplicity and stability of positive solutions of a diffusive prey-predator model [J]. Journal of Mathematical Analysis and Applications, 2006, 316(1) :256-268.
  • 3Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations [J ]. SIAMJournal on Mathematical Analysis, 1986,17(6):1339-1353.
  • 4Casten Richard G, Holland Charles J. Stability properties of solutions to systems of reaction-diffusion equations[J]. SIAM Journal on Applied Mathematics, 1977, 33(2):353-364.
  • 5Dung Le. Global L∞ estimaties for a class of reactiondiffusion systems [J]. Journal of Mathematical Analysis and Applications, 1998, 217(1) : 72-94.
  • 6Bence, J. R., Nisbet, R. M.: Space limited recruitment in open systems: The importance of time delays,Ecology, 70, 1434 1441 (1989).
  • 7Aiello, W. G., Freedman, H. I.: A time delay model of single species growth with stage structure. Math.Biosci, 101, 139-156 (1990).
  • 8Wang, W., Chen, L.: A predator-prey system with stage-structure for predator. Computers Math. Applic.,33(8), 83-91 (1997).
  • 9Wang, W.: Global'dynamics of a population model with stage structure for predator, in: L. Chen et al (Eds), Advanced topics in Biomathematics, Proceeding of tile international conference on mathematical biology, World Scientific Publishing Co. Pte. Ltd., 253 257 (1997).
  • 10Magnusson, K. G.: Destabilizing effect of cannibalism on a structured predator-prey system. Math. Biosci,155, 61-75 (1999).

共引文献27

同被引文献39

  • 1SCHEFFER M. Fish and nutrients interplay determines algal biomass: A minimal model[J]. OIKOS, 1991,62:271-282.
  • 2MALCHOW H, PETROVSKII S V, MEDVINSKY A B. Numerical study of plankton-fish dynamics in a spatially structured and noisy environment[J]. Ecol Model,2002,149: 247-255.
  • 3DUBEY B,KUMARI N, UPADHYAY R K. Spatiotemporal pattern formation in a diffusive predator-prey system, An analytical approach[J]. J Appl Math Comput, 2009,31 : 413-432.
  • 4JOEL Smoller. Shock waves and reaction-diffusion equations[M]. New York: Springer-Verlag, 1983.
  • 5Kar T K, Chattopadhyay S K. A focus on long-run sus- tainability of a harvested prey predator system in the presence of alternative prey[J]. Comptes Rendus Biolo- gies, 2010, 333(11).. 841-849.
  • 6Narayan K L, Ramacharyulu N C P. A prey-predator model with an alternative food for the predator, harves- ting of both the species and with a gestation period for interaction[J]. International Journal of Open Problems Computer Science and Mathematics, 2008, 1 ( 1 ) : 71-79.
  • 7Reddy K M, Narayan K L. A prey-predator model withan alternative food for the predator and optimal harves- ting of the prey[J]. Advances in Applied Science Re- search, 2011, 2(4): 451-459.
  • 8Kar T K, Ghosh B. Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator[J]. Biosystems, 2012, 109 (2) .. 220-232.
  • 9Jaeduck J, Ni Weiming, Tang Moxun. Global bifurca- tion and structure of turing patterns in the 1-D Lengyel- Epstein model [J]. Journal of Dynamical Differential Equations, 2004, 16(2): 297-320.
  • 10Smoller J. Shock waves and reaction diffusion equations [M]. New York: Springer-Verlag, 1999.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部