摘要
引入了Smarandache-Pascal派生逆序列的定义,并利用初等及组合方法讨论了Smarandache-Pascal派生逆序列的性质,得到几个有趣的恒等式,从而证明了如果任何基序列{Tn}是一个二阶线性递推序列,那么它所产生的Smarandache-Pascal派生逆序列{bn}也是一个二阶线性递推数列,且当基数列{Tdn+1}是一个二阶线性递推数列{Tn}的子列时,则它的派生逆序列{bn}的线性表示式更为简洁.
Smarandache-Pascal inverse-derived sequence is introduced, the properties of the Smarandache-Pascal inverse-derived sequence are studied, some interesting identities are obtained by using the elementary and combinational method, and it is proved that if the base sequence { Tn } is a second-order linear recurrence sequence, then its Smarandache-Pascal inverse-derived subsequence is a second-order linear recurrence sequence. Moreover,if the base sequence { Tdn+t } is a subset of the second-order linear recurrence sequence { Tn }, then its Smarandache-Pascal inverse-derived sequence {bn } has a simple linear recurrence expression.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第1期20-22,共3页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11071194)
陕西省教育厅科学研究计划项目(11JK0489)