期刊文献+

Smarandache-Pascal派生逆序列的几个恒等式

Some identities on the Smarandache-Pascal inverse derived sequence
下载PDF
导出
摘要 引入了Smarandache-Pascal派生逆序列的定义,并利用初等及组合方法讨论了Smarandache-Pascal派生逆序列的性质,得到几个有趣的恒等式,从而证明了如果任何基序列{Tn}是一个二阶线性递推序列,那么它所产生的Smarandache-Pascal派生逆序列{bn}也是一个二阶线性递推数列,且当基数列{Tdn+1}是一个二阶线性递推数列{Tn}的子列时,则它的派生逆序列{bn}的线性表示式更为简洁. Smarandache-Pascal inverse-derived sequence is introduced, the properties of the Smarandache-Pascal inverse-derived sequence are studied, some interesting identities are obtained by using the elementary and combinational method, and it is proved that if the base sequence { Tn } is a second-order linear recurrence sequence, then its Smarandache-Pascal inverse-derived subsequence is a second-order linear recurrence sequence. Moreover,if the base sequence { Tdn+t } is a subset of the second-order linear recurrence sequence { Tn }, then its Smarandache-Pascal inverse-derived sequence {bn } has a simple linear recurrence expression.
作者 赵院娥 刘卓
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期20-22,共3页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11071194) 陕西省教育厅科学研究计划项目(11JK0489)
关键词 Smarandache-Pascal派生序列 逆序列 二阶线性递推数列 组合方法 恒等式 Smarandache-Pascal derived sequence inverse sequence second-order linear recurrence sequence combinational method identity
  • 相关文献

参考文献6

  • 1Murthy A,Ashbacher C. Generalized partitions and new ideas on number theory and smarandache sequences[M].Hexds:Phoenix,2005.79.
  • 2Smarandache F. Only problems.not solutions[M].Chicago:Xiquan Publishing House,1993.
  • 3Wiemann M,Cooper C. Divisibility of an F-L type convolution,Applications of Fibonacci numbers[J].Kluwer Academic Publishers,2004.267-287.
  • 4Ma Rong,Zhang Wenpeng. Several identities involving the Fibonacci numbers and Lucas numbers[J].Fibonacci Quarterly,2007.164-170.
  • 5Yi Yuan,Zhang Wenpeng. Some identities involving the Fibonacci polynomials[J].Fibonacci Quarterly,2002.314-318.
  • 6Wang Tingting,Zhang Wenpeng. Some identities involving Fibonacci,Lucas polynomials and their applications[J].Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie,2012,(01):95-103.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部