期刊文献+

ELASTIC MEMBRANE EQUATION WITH MEMORY TERM AND NONLINEAR BOUNDARY DAMPING:GLOBAL EXISTENCE,DECAY AND BLOWUP OF THE SOLUTION 被引量:2

ELASTIC MEMBRANE EQUATION WITH MEMORY TERM AND NONLINEAR BOUNDARY DAMPING:GLOBAL EXISTENCE,DECAY AND BLOWUP OF THE SOLUTION
下载PDF
导出
摘要 In this paper we consider the Elastic membrane equation:with memory term and nonlinear boundary damping: Under some appropriate assumptions on the relaxation function h and with certain initial data, the global existence of solutions :and a general decay for the energy are established using the multiplier technique. Also, 'we show that a nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of a nonlinear damping. In this paper we consider the Elastic membrane equation:with memory term and nonlinear boundary damping: Under some appropriate assumptions on the relaxation function h and with certain initial data, the global existence of solutions :and a general decay for the energy are established using the multiplier technique. Also, 'we show that a nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of a nonlinear damping.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第1期84-106,共23页 数学物理学报(B辑英文版)
关键词 elastic membrane equation global existence boundary damping boundarysource general decay BLOWUP elastic membrane equation global existence boundary damping boundarysource general decay blowup
  • 相关文献

参考文献30

  • 1Aassila M,Cavalcanti M M,Domingos Cavalcanti V N. Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term[J].Calc Var Partial Differ Equ,2002,(02):155-180.
  • 2Aassila M,Cavalcanti M M,Soriano J A. Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[J].SIAM Journal on Control and Optimization,2000,(05):1581-1602.
  • 3Adams R A. Sobolev Spaces[M].New York:Academic Press,Inc,1975.
  • 4Alabau-Boussouira F,Cannarsa P,Sforza D. Decay estimates for second order evolution equations with memory[J].Journal of Functional Analysis,2007,(05):1342-1372.
  • 5Appleby J A D,Fabrizio M,Lazzari B,Reynolds D W. On exponential asymptotic stability in linear viscoelasticity[J].Mathematical Methods in the Applied Sciences,2006.1677-1694.
  • 6Arosio A,Spagnolo S. Global solution of the Cauchy problem for a nonlinear hyperbolic equation[A].College de France Seminar,1984.
  • 7Balakrishnan A V,Taylor L W. Distributed parameter nonlinear damping models for flight structures[A].1989.
  • 8Bass R W,Spillover D Z. Nonlinearity and flexible structures[A].NASA Conference Publication 10065,1991.1-14.
  • 9Cavalcanti M M,Domingos Cavalcanti Valéria N,Lasiecka I. Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction[J].Journal of Differential Equations,2007,(02):407-459.
  • 10Cavalcanti M M,Domingos Cavalcanti V N,Prates Filho J S,Soriano J A. Existence and exponential decay for a Kirchhoff-Carrier model with viscosity[J].Journal of Mathematical Analysis and Applications,1998,(01):40-60.

同被引文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部