期刊文献+

基于NMF的SVM故障诊断方法 被引量:7

SVM fault diagnosis method based on NMF
下载PDF
导出
摘要 针对大维数系统故障诊断中存在特征提取困难和识别率低的问题,提出基于非负矩阵分解(NMF,Non-negative Matrix Factorization)的支持向量机(SVM,Support Vector Machine)诊断方法,避免了直接对故障特征的选择和提取,实现特征降维,提高故障模式分类的准确性和速度;对于NMF中的结果随机性问题,提出用前次分解所得系数矩阵求解样本降维特征矩阵的方法,保证多次NMF分解尺度一致.实验表明该方法能对故障特征有效降维,并具有较高的诊断效率和故障识别率. For overcoming the difficulty of fault feature extraction and solving the low efficiency of fault feature classification in a large dimensions fault diagnosis system,an algorithm of support vector machine(SVM)based on non-negative matrix factorization(NMF)fault diagnosis was researched.It is to avoid the direct feature selection and extraction,to reduce the characteristic dimension,and improve the high-dimensional data feature mode classification speed and accuracy.In order to avoid NMF randomness,characteristics of fault samples dimensionality reduction by training samples coefficient matrix was calculated,so that the consistency of the scale of NMF decomposition times was ensured.The experiment shows that this algorithm can reduce the dimensions of fault feature.The method can enhance the running efficiency and the estimating accuracy.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第12期1639-1643,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 故障诊断 非负矩阵分解 支持向量机 fault diagnosis non-negative matrix factorization support vector machine
  • 相关文献

参考文献5

二级参考文献50

共引文献70

同被引文献66

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2张建明,曾建武,谢磊,王树青.基于粗糙集的支持向量机故障诊断[J].清华大学学报(自然科学版),2007,47(z2):1774-1777. 被引量:23
  • 3艾延廷,费成巍.基于支持向量机的转子振动故障融合诊断技术[J].沈阳工业大学学报,2010,32(5):526-530. 被引量:10
  • 4王淑娟,康磊,翟国富.电磁超声换能器的微弱信号检测[J].无损检测,2007,29(10):591-595. 被引量:20
  • 5Suykens J A K, Vandewalle J. Least Squares Support Vectors Machine Classifiers [ J -. Neural Processing Let- ters, 1999,9 (3) :293 - 300.
  • 6Smola A J, Scholkopf B, Muller K R. The Connection Between Regularization Operators and Support Vector Kernels [ J ]. Neural Networks, 1998, 11 ( 4 ) : 637 - 649.
  • 7Sugumaran V, Muralidharan V, Ramachandran K I. Feature Selection Using Decision Tree and Classifica- tion Through Proximal Support Vector Machine for Fault Diagnostics of Roller Bearing [ J ]. Mechanical Systems and Signal Processing,2007,21:930-942.
  • 8Gabor D.Theory of Communication [J].Institution of Electrical Engineering,1946,93:429-457.
  • 9Ville J.Theorie et Application de la Notion de Signal Ana-lytique [J].Cables et Transmission,1948,2A:61-74.
  • 10Lee Danlel D,Seung Sebastion H.Learning the Parts of Objects by Non-negative Matrix Factorization [J].Na-ture,1999,401:788-791.

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部