摘要
本文在 L MINN方法的基础上 ,提出了两类变参数梯度法 ,然后证明了这两类方法在非精确线性搜索的
In this paper, author present two class of gradient methods with a parameter in the choice of the scalar β k , and the b class and the μ class of these methods are first improved, then two class of gradient methods with a variable parameter are attained and it is shown that these two class of gradient methods are both descent methods and of global convergence when steplength satisfy general Wolfe conditions.
出处
《应用数学》
CSCD
2000年第3期15-19,共5页
Mathematica Applicata
关键词
梯度法
非精确线性搜索
全局收敛性
最优化
Gradient methods
Inexact line search
Descent property
Global convergence