期刊文献+

Exponentially increased nucleation ability for poly(L-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios

Exponentially increased nucleation ability for poly(L-lactide) by adding acid-oxidized multiwalled carbon nanotubes with reduced aspect ratios
原文传递
导出
摘要 Acid-oxidized multiwalled carbon nanotubes (A-MWCNTs) with a range of reduced aspect ratios (from about 11 to 5.8) were obtained by acid oxidization of MWCNTs in the mixture of HNO 3 and H 2 SO 4 for varying periods of 1, 3, 8 and 12 h, respec- tively. The aspect ratios and surface functionalization of A-MWCNTs were well characterized by scanning electron microsco- py (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and thermogravimetric analysis (TGA). Poly(L-lactide)/A-MWCNT composites containing 0.5 wt% A-MWCNTs with a range of reduced aspect ratios were prepared by solution cast. The effects of added A-MWCNTs on the isothermal crystallization kinetics of poly(L-lactide)/A-MWCNT composites were investigated by means of differential scanning calorimetry (DSC), rheology and polarized optical microscopy (POM). It is surprising to find that not only the addition of A-MWCNTs effectively increases the poly(L-lactide) (PLA) crys- tallization kinetics, but also the nucleation ability of A-MWCNTs for PLA crystallization exponentially increases with the re- duced aspect ratio, that is to say, those with lower aspect ratios show much stronger nucleation ability for PLA crystallization than those with higher aspect ratios. The exponentially increased nucleation ability of A-MWCNTs with a range of reduced aspect ratios for PLA crystallization is disclosed. Acid-oxidized multiwalled carbon nanotubes (A-MWCNTs) with a range of reduced aspect ratios (from about 11 to 5.8) were obtained by acid oxidization of MWCNTs in the mixture of HNO 3 and H 2 SO 4 for varying periods of 1, 3, 8 and 12 h, respec- tively. The aspect ratios and surface functionalization of A-MWCNTs were well characterized by scanning electron microsco- py (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and thermogravimetric analysis (TGA). Poly(L-lactide)/A-MWCNT composites containing 0.5 wt% A-MWCNTs with a range of reduced aspect ratios were prepared by solution cast. The effects of added A-MWCNTs on the isothermal crystallization kinetics of poly(L-lactide)/A-MWCNT composites were investigated by means of differential scanning calorimetry (DSC), rheology and polarized optical microscopy (POM). It is surprising to find that not only the addition of A-MWCNTs effectively increases the poly(L-lactide) (PLA) crys- tallization kinetics, but also the nucleation ability of A-MWCNTs for PLA crystallization exponentially increases with the re- duced aspect ratio, that is to say, those with lower aspect ratios show much stronger nucleation ability for PLA crystallization than those with higher aspect ratios. The exponentially increased nucleation ability of A-MWCNTs with a range of reduced aspect ratios for PLA crystallization is disclosed.
出处 《Science China Chemistry》 SCIE EI CAS 2013年第2期181-194,共14页 中国科学(化学英文版)
基金 financially supported by the National Natural Science Foundation of China (51073145) National Basic Research Program of China (2012CB025901) partially by the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
关键词 poly(L-lactide) MWCNTs aspect ratio NUCLEATION 多壁碳纳米管 L-丙交酯 核能力 长宽比 倍增 氧化 等温结晶动力学 傅立叶变换红外光谱
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部