期刊文献+

基于神经网络的变风量空调解耦控制 被引量:8

Research on Decoupling Control of VAV Air Conditioning System Based on Neural Network
下载PDF
导出
摘要 目的分析变风量空调运行时各变量之间的耦合关系,针对变风量空调参数多变、强耦合的特点,提出一种变风量空调系统改进型误差反播神经网络解耦控制方法,对变风量空调温湿度控制系统进行解耦.方法把整个系统的解耦目标分解为N个子目标,每个子目标仅仅对一个回路通道进行解耦,其结构与指标函数简单,易于实现;并将模糊神经网络控制器与解耦控制器有机结合.结果解耦成功后,控制响应速度快、超调量几乎为零,达到期望温度后温度曲线保持不变,而此过程中湿度值基本没有变化,整个控制过程调节响应快,稳态误差小,解耦效果明显,有很强的控制精度和鲁棒性.结论 BP神经网络解耦控制算法具有很强的自学习功能和自适应解耦能力,能取得良好的解耦控制效果. The paper aims to analyze the coupling relationship between every variable when VAV air conditioning operation,as the VAV air conditioning has variable parameters and strong coupling characteristics.We propose a variable air volume air conditioning system improved error reverse sowing neural network decoupling control method to decouple VAV air conditioning temperature and humidity control system.Decomposed decoupling target of the whole system for N goals,every sub goal only decouple a loop channels,its structure and index function is simple,easy to be implemented;and combined the fuzzy neural network controller and decoupling controller.After decoupling,control response becomes speed and overshoot is almost zero,temperature curve remains unchanged after the temperature reach the expected,among the process humidity value basically does not change,the whole control process adjustment response is fast,steady state error is small,the decoupling effect is obvious,has very strong control accuracy and robustness.The BP neural network decoupling control algorithm has strong self-learning function and adaptive decoupling ability,can obtain good decoupling control effect.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2013年第1期187-192,共6页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(60874103)
关键词 变风量空调 神经网络 解耦控制 仿真 Variable air volume neural network the method decoupling control simulation
  • 相关文献

参考文献16

  • 1Liu X,Dexter'A. Fault-tolerant supervisory control of VAV air-conditioning systems[J].Energy and Buildings,2001,(04):379-389.
  • 2Gao J,Sun Y,Wen J. An experimental study of energy consumption and thermal comfort for electric and hydronic reheats[J].Energy and Buildings,2005,(37):203-214.
  • 3David V,Sanchez A. Searching for a solution to the automatic RBF network design problem[J].Neural Computation,2002.147-170.
  • 4Liu J G. Electromagnetic speed regulation technology of shearer[J].World Journal of Engineering,2004,(01):214-222.
  • 5Song Q,Hu W J. Robust neural network controller for variable air flow volume system[J].Control Theory and Applications,2003,(02):112-118.
  • 6Widodo A,Yang B S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors[J].Expert Systems with Applications,2007,(01):241-250.doi:10.1016/j.eswa.2006.04.020.
  • 7Syed Mahmud Husain.Robust neural network controller for variable airflow volume system[M]新加坡:南洋理工大学,2002.
  • 8Fu Y;Chai T Y.Direct adaptive decoupling control of nonlinear systems based on neural networks and multiple models[A]辽宁大连,2006.
  • 9叶大法;杨国荣.变风量空调系统设计[M]北京:中国建筑工业出版社,2007.
  • 10马富军,张益华.浅谈VAV空调系统控制中的几个问题[J].制冷空调与电力机械,2005,26(6):68-69. 被引量:5

二级参考文献23

共引文献26

同被引文献66

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部