期刊文献+

Duffing型方程组的边界值问题的解的存在性 被引量:5

On the Existence of Solutions of Boundary Value Problems of Duffing Type Systems
下载PDF
导出
摘要 给出了带Dirichlet边界条件。 Several existence results of solutions of two_point boundary value problems of Duffing type systems with Dirichlet boundary conditions, Neumann boundary conditions and periodic boundary conditions are presented.
出处 《应用数学和力学》 EI CSCD 北大核心 2000年第8期875-880,共6页 Applied Mathematics and Mechanics
关键词 两点边界值问题 存在性 Duffing方程组 Hilbert space system of differential equations two_point boundary value problem solution
  • 相关文献

参考文献3

共引文献6

同被引文献31

  • 1HuangWenhua,ShenZuhe.ON A TWO-POINT BOUNDARY VALUE PROBLEM OF DUFFING TYPE EQUATION WITH DIRICHLET CONDITIONS[J].Applied Mathematics(A Journal of Chinese Universities),1999,14(2):131-136. 被引量:2
  • 2WUGUANGRONG,HUANGWENHUA,SHENZUHE.ON A MIN-MAX THEOREM[J].Applied Mathematics(A Journal of Chinese Universities),1997,12(3):293-298. 被引量:1
  • 3王铎.周期扰动的非保守系统的2π周期解[J].数学学报,1983,(1983):341-353.
  • 4Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse function theorem[J].Nonlinear Analysis,1980,4(1): 193-201.
  • 5Radulescu Marius,Radulescu Sorin.Global inversion theorems and applications to differential equations[J].Nonlinear Analysis,1980,4(4): 951-965.
  • 6Shen Zuhe.On the periodic solution to the Newtonian equation of motion[J].Nonlinear Analysis,1989,13(2): 145-150.
  • 7Lazer A C,Landesman E M,Meyers D R.On saddle point problems in the calculus of variations,the ritz algorithm,and monotone convergence[J].J Math Anal Appl,1975,52(2): 594-614.
  • 8Manasevich R F.A non-variational version of a max-min principle [J].Nonlinear Analysis,1983,7(6): 565-570.
  • 9Bates P W,Castro A.Existence and uniqueness for a variational hyperbolic system without resonance[J].Nonlinear Analysis,1980,4(6):1151-1156.
  • 10Ahmad S.An existence theorem for periodically perturbed conservative systems[J].Mich Math JCU,1973,20: 385-392.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部