期刊文献+

基于蚂蚁算法的关联规则挖掘 被引量:1

Association Rule Mining Based on Ant Algorithms
下载PDF
导出
摘要 蚁群算法是一种新型的用于求解组合优化或函数优化问题的启发式算法,其基本思想是借用生物界的蚂蚁群体觅食机理,将每个蚂蚁看作一个智能体.本文提出一种基于蚁群系统的数据挖掘中的关联规则挖掘模式。这种基于启发式优化算法的模式可以为用户决策提供一个很好的支持。这种方式可以很快的找到关联规则也可以确保规则结果的准确性。最后用实验结果的对比来进一步说明这种方法的高效和准确性。 Ant colony algorithm is a new kind of meta-heuristic algorithms for solving combinatorial optimization problems or continuous function optimization problems,and it borrows the mechanism of ant search,and every ant is looked for as all agent.This paper presents an ant colony system-based data mining,association rule mining model.This heuristic algorithm based on user decision-making model can provide a good support.This way you can quickly find the association rules to ensure the accuracy of the results of the rules.Finally,we use the experimental results to further illustrate the method efficiency and accuracy.
出处 《软件》 2012年第10期16-19,共4页 Software
基金 中央高校基本科研项目 北京邮电大学青年科研创新计划专项(编号:2012RC0201)
关键词 机器学习 蚁群算法 启发式 关联规则 数据挖掘 Machine Learning Ant colony algorithm heuristic association rule data mining
  • 相关文献

参考文献8

  • 1Dofigo M,Stfitzle T. Ant colony optimization[M].Cambridge,ma:the Mit Press,2004.
  • 2Outjahr W J,A graph. based ant system and its convergence[J].Future Generation Computer Systems,2000,(08):873-888.doi:10.1016/S0167-739X(00)00044-3.
  • 3Stuezle T,Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J].IEEE Transactions on Evolutionary Computation,2002,(04):358-365.doi:10.1109/TEVC.2002.802444.
  • 4段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制,2004,33(2):241-244. 被引量:57
  • 5孙焘,王秀坤,刘业欣,张名举.一种简单蚂蚁算法及其收敛性分析[J].小型微型计算机系统,2003,24(8):1524-1527. 被引量:21
  • 6黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 7段海滨.蚁群算法原理及其应用[M]北京:科学出版社,2005.
  • 8刑文训;谢金星.现代优化计算方法[M]北京:清华大学出版社,1999.

二级参考文献35

  • 1柯良军,冯祖仁,冯远静.有限级信息素蚁群算法[J].自动化学报,2006,32(2):296-303. 被引量:17
  • 2杨文国,郭田德.求解最小Steiner树的蚁群优化算法及其收敛性[J].应用数学学报,2006,29(2):352-361. 被引量:19
  • 3Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies [ A]. Proceedings of ECAL91 ( European Conference on Artificial Life) [ C ]. Paris, France : 1991.134 - 142.
  • 4Dorigo M, Maniezzo V, Colomi A. The ant system:optimization by a colony of cooperating agents [ J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 1996, 26( 1 ) : 29-41.
  • 5Verbeeck K, Nowe A. Colonies of learning automata [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2002,32(6) : 772 -780.
  • 6Montgomery J, Randall M. Anti-pheromone as a tool for better exploration of search space [A]. Proceedings of Third International Workshop ANTS [C]. Brussels, Belgium:2002. 100 - 110.
  • 7Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6) :39-42.
  • 8Dorigo M, Gambardella L M. Solving symmetric and asym-metric TSPs by ant colonies [ A ]. Proceedings of the IEEE Conference on Evolutionary Computation [ C ]. Nagoya, Japan : 1996. 622-627.
  • 9Thomas S, Holger H H. MAX - MIN ant system [J]. Future Generation Computer Systems, 2000,16 ( 8 ) : 889 - 914.
  • 10Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6) :39 -42.

共引文献144

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部