期刊文献+

关于凝聚局部环的正则性 被引量:2

On the Regularity of Coherent Local Rings
原文传递
导出
摘要 本文证明了极大理想m是有限生成的交换凝聚局部环(R,M)是正则的充分必要条件是m可以由一个正则R-序列生成,推广了文献[1]中相应的结论并给出了一个由正则凝聚局部环构造大量的非正则凝聚局部环的方法. In this paper, it is proved that a commutative coherent local ring with maximal ideal m, which is finitely generated, is regular if and only if m can be generated by a regular R-sequence. Some corresponding results in [1] are generalized, and a method for constructing non-regular coherent local rings from regular coherent local rings is gived.
机构地区 南京大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2000年第4期615-622,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金!19771046
关键词 正则环 超正则环 弱维数 余维数 凝聚局部环 Coherent rings Regular rings Super regular rings Weak global dimension Codimension
  • 相关文献

参考文献7

  • 1Tong Wenting,Introduction to Homological Algebra (in Chinese),1998年
  • 2Huang Zhaoyong,Pitman Research Notes inMath, 346, Rings and Radicals,1996年,207页
  • 3Zhao Yicai,数学研究与评论,1993年,13卷,1期,99页
  • 4Zhao Yicai,Comm Algebra,1992年,20卷,5期,1389页
  • 5Zhao Yicai,Proc Am Math Soc,1992年,115卷,935页
  • 6Chen Fuchang,Homological Algebra (in Chinese),1989年
  • 7Feng Keqin,Basic Commutative Algebra (in Chinese),1985年

同被引文献13

  • 1WOLFSON K G. An ideal-theoretic characterization of the ring of all linear transformations [J]. American Journal ofMathematics,1953,75(2) : 358-386. DOI: 10.2307/2372458.
  • 2ZELINSKY D. Every linear transformation is a sum of nonsingular ones [ J ]. Proceedings of the AmericanMathematical Society?1954,5(4) : 627-630. DOI: 10.2307/2032048.
  • 3VAMOS P. 2-good rings [J3* The Quarterly Journal of Mathematics, 2005, 56 (3): 417-430. DOI: 10. 1093/qmath/hah046.
  • 4SRI V AST A V A A K. A survey of rings generated by units[J]. Ann Fac Sci Toulouse Math, 2010,19 (si) : 203-213.D01:10.5802/afst.l281.
  • 5TANG Gaohua,ZHOU Yiqiang. When is every linear transformation a sum of two commuting invertible ones ? [J].Linear Algebra and Its Applications,2013,439(11) : 3615-3619. DOI: 1016/j.laa.2013.09.038.
  • 6GROVER H K, WANG Zhou, KHURANA D, et al. Sums of units in rings [J]. Journal of Algebra and ItsApplications,2014,13(1) :1350072. DOI: 10.1142/s0219498813500722.
  • 7TANG Gaohua?ZHOU Yiqiang. Strong cleanness of generalized matrix rings over a local ring[J]. Linear Algebra andIts Applications,2012,437(10): 2546-2559. DOI: 10.1016/j.laa.2012.06.035.
  • 8YANG Xiande,ZHOU Yiqiang. Strong cleanness of the 2X2 matrix ring over a general local ring[J]. Journal ofAlgebra,2008,320(6): 2280-2290. DOI: 10.1016/j.jalgebra.2008.06.012.
  • 9AVNI N, ONN U, PRASAD A, et al. Similarity classes of 3 X 3 matrices over a local principal ideal ring [J].Communications in Algebra,2009,37(8) : 2601-2615. DOI: 10.1080/00927870902747266.
  • 10KRYLOV P A. Isomorphism of generalized matrix rings [J]. Algebra and Logic, 2008,47 (4) : 258-262.DOI: 10.1007/sl0469-008-9016-y.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部