摘要
本文证明了极大理想m是有限生成的交换凝聚局部环(R,M)是正则的充分必要条件是m可以由一个正则R-序列生成,推广了文献[1]中相应的结论并给出了一个由正则凝聚局部环构造大量的非正则凝聚局部环的方法.
In this paper, it is proved that a commutative coherent local ring with maximal ideal m, which is finitely generated, is regular if and only if m can be generated by a regular R-sequence. Some corresponding results in [1] are generalized, and a method for constructing non-regular coherent local rings from regular coherent local rings is gived.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第4期615-622,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!19771046
关键词
正则环
超正则环
弱维数
余维数
凝聚局部环
Coherent rings
Regular rings
Super regular rings
Weak global dimension
Codimension