摘要
令B2是2维复平面C2上的单位球,(α>-1)是它上的加权测度.由Cauchy-Riemann算子观点和[1]中给出的三角域上的正交多项式,我们得到了正交分解和正交基,其中A0(+,+)和A0(-,-)分别是Bergman空间和共轭Bergman空间.利用单纯形上的正交多项式,可以将这种分解推广到L2(Bn,dμα(z))上去.另外,我们还得到了Hankel型算子的一些结果.
Let B2 be the unit ball of 2-dimensional complex plane C2, dμα(z) = dm(z)(α>-1) the weighted measure. From the view point of the Cauchy-Riemann operator and the triangle polynomial given in [1], we obtain an or thogonal decomposition and orthogonal basis, where A0(+,+) and A0(-, -) are the Bergman and anti-Bergman spaces respectively. This decomposition can be extended to L2(Bn, dμα(z)). In addi tion, we also obtain some results for Hankel type operators.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第4期665-672,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!19701025