期刊文献+

L^2(B_2,dμ_α(z))正交分解及Hankel型算子

The Orthogonal Decomposition of L^2 (B_2, dμ_α(z)) and Hankel Type Operators
原文传递
导出
摘要 令B2是2维复平面C2上的单位球,(α>-1)是它上的加权测度.由Cauchy-Riemann算子观点和[1]中给出的三角域上的正交多项式,我们得到了正交分解和正交基,其中A0(+,+)和A0(-,-)分别是Bergman空间和共轭Bergman空间.利用单纯形上的正交多项式,可以将这种分解推广到L2(Bn,dμα(z))上去.另外,我们还得到了Hankel型算子的一些结果. Let B2 be the unit ball of 2-dimensional complex plane C2, dμα(z) = dm(z)(α>-1) the weighted measure. From the view point of the Cauchy-Riemann operator and the triangle polynomial given in [1], we obtain an or thogonal decomposition and orthogonal basis, where A0(+,+) and A0(-, -) are the Bergman and anti-Bergman spaces respectively. This decomposition can be extended to L2(Bn, dμα(z)). In addi tion, we also obtain some results for Hankel type operators.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2000年第4期665-672,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金!19701025
关键词 BERGMAN空间 正交分解 Hankel型算子 正交基 Bergman space Orthogonal decomposition Hankel type operator
  • 相关文献

参考文献1

  • 1Zhang Moucheng, Department of Mathematics, South China Normal University, Guangzhou 510631, ChinaKan Haibing, Institute of Mathematics, Fudan University, Shanghai 200433, ChinaLi Yonghua, Department of Mathematics, Yunnan University, Kunming 650000, China Department of Mathematics, South China Normal University, Guangzhou 510631, China.On the Construction of the Conjugate Hull of Brandt Semigroups[J].Acta Mathematica Sinica,English Series,1998,14(4):519-526. 被引量:2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部