摘要
本文给出了DoiY.构造的偶交叉积BT■H的代数结构与ReshetikhimN.构造的双代数B■RH的余代数结构在张量空间B■H上构成双代数(记为Bτ■RH)的充要条件,利用此结论具体构造了一个有趣的例子B4■KZ2;证明了当B,H均为Hopf.代数时Bτ■RH也为Hopf代数,最后给出这类双代数的映射刻划。
The double crossed-product Bτ■bH by Doi Y. constructed and bialgebra B■bH by Reshetikhim N. constructed are well known in [1, 3], in this paper we find necessary and sufficient conditions for the Bτ■H algebra structure and B■RH coalgebra structure on B■H to afford B■H a bialgebra structure (Let Bτ■H denote the resulting bialgebra). By use this result, we construct an intersting example B4τ■R KZ2. In the final we give characterization of Bτ■R H by introducing the mapping system.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第4期677-684,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!19601015
河南省教委资助