摘要
本文研究了连续函数代数C(X)与某个C*-代数A的张量积C(X)A的自同构群.当A是有单位元且具有平凡中心的C*-代数时,本文完全刻划了C(X)A的自同构群.利用AF-代数的K-理论,本文还刻划了当X是全不连通的紧致Hausdorff空间时,C(X)与紧算子理想的张量积的自同构群.
The paper studied the automorphism on the tensor product C(X)A of the continuously function algebra and some C*-algebra. When A is a unita1 C*-algebra with trivial center, the paper characterized completely the automorphism group on the C(X)A. By using K-theory of AF-algebra, the paper characterized the automorphism group on the tensor product of the C(X) and the compact ideal when X is a tottaly disconnected compact Hausdoof space.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第4期763-768,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
教育部数学中心基金
四川大学青年基金
博士点专项基金