期刊文献+

凑合反推法和弹性理论中的多变量广义变分原理 被引量:5

Semi-Inverse Method and Generalized Variational Principles With Multi-Variables in Elasticity
下载PDF
导出
摘要 详细介绍了如何应用凑合反推法 (semi_inversemethod)构造弹性理论中的两类独立变量的广义变分原理 (包括熟知的Hellinger_Reissner变分原理 ,Hu_Washizu变分原理 )及三类独立变量的广义变分原理 (钱伟长广义变分原理 ) · 应用凑合反推法还可以清楚地看出各变量之间的约束关系 ,从而再一次证明了Hu_Washizu变分原理实际上是两类独立变量的广义变分原理· Semi_inverse method, which is an integration and an extension of Hu's try_and_error method, Chien's veighted residual method and Liu's systematiic method, is proposed to establish generalized variational principles with multi_variables without any variational crisis phenomenon. The method is to construct an energy trial_functional with an unknown function F, which can be readily identified by making the trial_functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well_known Hellinger_Reissner variational principle and Hu_Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi_inverse method, the author has also proved that Hu_Washizu principle is actually a variational principle with only two kinds of independent variables, stress_strain relations are still its constraints.
作者 何吉欢
机构地区 上海大学
出处 《应用数学和力学》 EI CSCD 北大核心 2000年第7期721-731,共11页 Applied Mathematics and Mechanics
基金 国家重点基础研究专项经费资助项目 !(G19980 2 0 318)
关键词 钱伟长广义变分原理 弹性理论 凑合反推法 variational principle in elasticy Chien's generalized variational principles Hu_Washizu principle semi_inverse method trial_functional variational crisis
  • 相关文献

参考文献17

二级参考文献36

  • 1刘高联.流体力学变分原理及有限元法研究的进展[J].上海力学,1989,10(3):73-80. 被引量:15
  • 2钱伟长.高阶拉氏乘子法和弹性理论中的更一般的广义变分原理[J].应用数学和力学,1983,4(2):137-150.
  • 3刘高联.流体力学变分原理建立与变换的系统性途径[J].工程热物理学报,1990,11:136-142.
  • 4胡海昌.弹性理论和塑性理论中的一些变分原理[J].物理学报,1954,10(3):259-290.
  • 5钱伟长.再论弹性力学中的广义变分原理--就等介定义问题和胡海昌先生商榷[J].力学学报,1983,4(2):313-323.
  • 6胡海昌.关于拉氏乘子法及其它[J].力学学报,1985,17(5):426-434.
  • 7刘高联.流体力学变分原理的建立与变换的系统性途径[J].工程热物理学报,1990,11(2):136-142. 被引量:20
  • 8彭桓武,科学通报,1975年,20卷,9期,416页
  • 9刘高联,空气动力学学报,1985年,3卷,3期,24页
  • 10刘高联,力学学报,1981年,13卷,5期,421页

共引文献28

同被引文献31

  • 1梁立孚,刘殿魁,宋海燕.非保守系统的两类变量的广义拟变分原理[J].中国科学(G辑),2005,35(2):201-212. 被引量:23
  • 2PU Jun-ping,ZHENG Jian-jun.Structural dynamic responses analysis applying differential quadrature method[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(11):1831-1838. 被引量:5
  • 3卓家寿.弹塑性力学中的广义变分原理[M].第二版.北京:中国水利水电出版社,2004:10-68.
  • 4HE Ji- Huan. Variational approach to (2+1) - dimensional dispersive long water equations [J].PhysLett A, 2005, 335(2-3): 182-184.
  • 5ZHOU Xin-wei. Variational theory for physiological flow [J]. Computers & Mathematics with Applications, Z007, 54(7-8): 1000-1002.
  • 6TAO Zhao-ling. Variational approach to the inviscid compressible fluid [J]. Acta Applicandae Mathematicae, 2008, 100(3): 291-294.
  • 7PAK S. Solitary wave solutions for the RLW equation by He's semi- inverse method[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(4): 505-508.
  • 8OZIS T, YIDIRIM A. Application of He's semi-inverse method to the nonlinear Schrodinger equation [J]. Computers & Mathematics with Applications, 2007, 54(7-8): 1039-1042.
  • 9ZHANG Juan, YU Jian - yong, PAN Ning. Variational principles for nonlinear fiber optics[J]. Chaos, Solitons & Fractals, 2005, 24 ( 1 ): 309-311.
  • 10XU Lan. Variational principles for coupled nonlinear Schrodinger equations [J].Phys Lett A, 2006, 359(6): 627-629.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部