期刊文献+

得分向量偏序集上Schur函数和奇异得分向量

Schur Function on the Poset of Score Vectors and Singular Score Vectors
下载PDF
导出
摘要 所有 n维得分向量集合 Ln在优超关系下是一个偏序集。Ln上的实函数 g(s)称为 (严格 ) Schur凸的 ,若对任意 s,s′∈ L′n,s≠ s′,s优超 s′,恒有 g(s) (>) g(s′)。本文证明了 f (x) =s Ts和得分向量为 s的竞赛图Tn中 3-圈个数 c3 (s)在 Ln上分别是严格 Schur凸和严格 Schur凹的。称 n维得分向量 s为奇异的 ,若得分向量为 s的每个 n阶竞赛图 Tn的邻接矩阵都是奇异的。最后 ,应用 Ln上严格 Schur凸函数 f (s) 。 The set Ln of all n- term score vectors is a poset (i.e.,partially ordered set) under the majorization relation.A real function g(s) on the poset Lniscalled(strict) Schur convex if g(s) (>) g(s′) for any s,s′ ∈ Ln,s≠ s′,smajorizes s′.Itisproved thatf(s) =s Ts and c3 (s) ,the numberof 3- cycle in any tournament T with score vectorss,are strict Schur convex and strict Schur concave respectively.A n- term score vector s is called singular if every tournamentmatrix with score vectorssissingular.By using the strict Schurfunction f (s) on the poset Lnwe give a sufficient condition for a score vector being singular.
出处 《工程数学学报》 CSCD 北大核心 2000年第2期1-7,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金资助项目!(批准号 1 9971 0 86)
  • 相关文献

参考文献12

  • 11,Bell F K,Rowlinson P.Certain graphs without zero as an eigenvalue.Math Japoniac,1993;38:961~967
  • 22,Brualdi R A,Ryser H J.Combinatorial matrix theory.Cambridge University Press,1991
  • 33,Carlson D.Nonsingularity criteria for matrices involuing combinatorial considerations.Linear Algebra and its Application,1988;107:41~56
  • 44,Carlson D,Hershkowitz D.Nonsingularity criteria for general combinatorially symmetric matrices.Linear Algebra and its Application,1988;114/115:41~56
  • 55,Harary F,Moser L.The theory of round robin tournaments.Amer Math Monthly,1966;73:231~246
  • 66,Kitamura T,Nikei M.On some sufficient conditions for a graph to have the eigenvalue of zero.Math Japonica,1992;36:433~439
  • 77,Landau H G.On dominance relations and the structure of animal societies Ⅲ,the condition for a score structure.Bull Math Biophys,1953;15:143~148
  • 88,Marshall A W,Olkin I.Inequality theory of majorization and its applications.New York:Academic Press,1979
  • 99,Moon J W.Topics on tournaments.New York Holt Rinehart and Winston,1968
  • 1010,Schwenk A J,Wilson R J.Eigenvalues of graphs.In Selected Topics in Graph Theory,Beineke I W,Wilson R J.ed.New York:Academic Press,1978;307~336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部