摘要
本文研究Banach空间X中远达和同时远达问题的适定性,在集合的Haus- dorff距离下,对X中的闭凸子集D和相对弱紧的有界闭子集K,证明了下述结果: 若D关于K严格凸和有Kadec性质,则D中所有使远达问题 max{x,K}是适定的 点x全体在D中是Gδ型集.作为应用,得到了同时远达问题适定性的类似结果.
The well posedness of farthest and simultaneous farthest problems in Banach spaces X are investigated. Under the Hausdorff metric of subsets, for closed convex subset D and bounded closed, relatively weakly compact K in X, we proved that the set of all points in D such that the farthest problem ma-c{x, K} is well posed is a dense Ge subset in D provided that D is both strictly convex and Kadec with respect to K. As an application, we also obtain the corresponding results for the simultaneous farthest problems.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第3期421-426,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!(19971013)
江苏省自然科学基金
关键词
远达
同时远达问题
相对弱紧
适定性
巴拿赫空间
Farthest and simultaneous farthest problems
Relatively weakly compact
Well posedness