期刊文献+

凹腔尺寸对迎风凹腔与逆向喷流组合热防护系统性能的影响 被引量:8

Effect of cavity physical dimension on forward-facing cavity and opposing jet thermal protection system cooling efficiency
原文传递
导出
摘要 针对高超声速飞行器热防护系统(TPS)的设计,对迎风凹腔与逆向喷流组合热防护系统展开研究.在数值方法实验验证的基础上,通过求解Navier-Stokes方程得到了带组合热防护系统的鼻锥的流场结构以及壁面热流分布.验证了组合热防护系统的有效性.在逆向喷流条件不变的情况下,进一步研究了凹腔的尺寸变化对其防热能力的影响.研究发现:凹腔的直径越小,深度越深,气动加热值越低.自由来流与逆向喷流形成的回流区在减少鼻锥的气动加热上起到关键的作用.相对于凹腔深度的变化,鼻锥壁面的气动加热更敏感于凹腔直径的变化. Design of the thermal protection system(TPS) with the forward-facing cavity and opposing jet combined configuration was investigated numerically for the hypersonic vehicle.The numerical method was validated with the related experiments.The flow field parameters and surface heat flux distribution were obtained by solving the Navier-Stokes(N-S) equations.The validity of the combined TPS was testified and the effect of the cavity physical dimension on cooling efficiency of the combined TPS was discussed.The results show that the TPS with smaller diameter cavity has smaller aerodynamic heating and the TPS with larger length cavity has higher heat flux reduction.The recirculation region plays a pivotal role for the reduction of heat flux.The aerodynamic heating is more sensitive to the changing of the cavity diameter than the cavity length.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2012年第12期2666-2673,共8页 Journal of Aerospace Power
基金 国家自然科学基金(90916018) 高等学校博士学科点专项科研基金(200899980006)
关键词 热防护 高超声速飞行器 逆向喷流 迎风凹腔 数值模拟 气动加热 thermal protection hypersonic vehicle opposing jet forward-facing cavity numerical simulation aerodynamic heating
  • 相关文献

参考文献21

  • 1Aiichiro T,Hiroyuki Y. Advanced thermal protection systems for reusable launch vehicles[AIAA-2001-1909][R].2001.
  • 2王保国,李翔,黄伟光.激波后高温高速流场中的传热特性研究[J].航空动力学报,2010,25(5):963-980. 被引量:8
  • 3侯玉柱,郑京良,董威.高超声速飞行器瞬态热试验[J].航空动力学报,2010,25(2):343-347. 被引量:24
  • 4Glass D E. Heat pipe-cooled leading edges for hypersonic vehieles[A].Santa Barbara U.S,2006.
  • 5叶宏,耿雪.热光伏技术在飞行器再入过程中的应用[J].中国科学:技术科学,2011,41(1):102-108. 被引量:1
  • 6Warren C H E. An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body[J].Journal of Fluid Mechanics,1960,(03):400-417.
  • 7Aso S,Hayashi K,Mizoguchi M. A study on aerodynamic heating reduction due to opposing jet in hypersonic flow[AIAA 2002-0646][R].2002.
  • 8Hayashi K,Aso S. Effect of pressure ratio on aerodynamic heating reduction due to opposing iet[AIAA-2003-4041][R].2003.
  • 9Hayashi K,Aso S,Tani Y. Numerical study of thermal protection system by opposing jet[AIAA-2005-188][R].2005.
  • 10Tamada I,Aso S,Tani Y. Reducing aerodynamic heating by the opposing jet in supersonic and hypersonic flows[AIAA-2010-991][R].2010.

二级参考文献20

  • 1王保国,刘淑艳,张雅,纪秀玲,靳艳梅.双时间步长加权ENO-强紧致高分辨率格式及在叶轮机械非定常流动中的应用[J].航空动力学报,2005,20(4):534-539. 被引量:9
  • 2张伟,王乐善,王梦魁,王庆盛,巨亚堂.气动加热模拟试验加热系统控制研究[J].强度与环境,2005,32(3):45-52. 被引量:9
  • 3American Society for Testing and Materials. C177-04 Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus [S]//2004 Annual Book of ASTM Standards. USA:American Society of Testing Materials, 2004.
  • 4American Society for Testing and Materials. C411-05 Standard test method for hot-surface performance of high-temperature thermal insulation [S]//2004 Annual Book of ASTM Standards. USA: American Society of Testing Materials, 2004.
  • 5Richards W L. Strain gage measurement errors in the transient heating of structural components[R]. NASA Technical Memorandum 104274, December 1993.
  • 6Daryabeigi K,Knutson J R, Sikora J G. Thermal vacuum facility for testing thermal protection system[R]. NASA/ TM -2002-211734,2002.
  • 7Sawyer J W,Hodge J,Moore B,et al. Aerothermal test of thermal protection system for X 33 reusable launch vehicle[J].Aip Conference Proceedings, 1999,458 : 1087-1100.
  • 8Deangelis V M,Anderson K F. Thermal structural test facilities at NHASA dryden [R]. NASA N92-34202, Aug. 1992.
  • 9Hrn T J, Ricards W L, Gong L. A technique for transient thermal testing of thick structures[R]. NASA Technical Memorandum 4803 ,July 1997.
  • 10Eckert E R G. Engineering relations for friction and heat transfer to surface in high velocity flow[J]. Journal of the Aeronautical Science, 1955,22(8) :585-587.

共引文献30

同被引文献58

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部