摘要
A simplified three-dimensional numerical model was presented to simulate the micro-crack nucleation and growth to some predefined dimension(approximately 0.38 mm) on the throat surface of a Ni-base powder metallurgy(PM) specimen.The numerical simulation of micro-crack initiation was based on the Tanaka-Mura micro-crack initiation models,where individual grains of the mesoscopic model were simulated using the Voronoi tessellation.Four improvements were made in the model.(1) Considering crack initiation along with 12 principal slip systems on octahedral slip planes of face centered cubic(FCC) crystal in three-dimensional(3-D) models.(2) Considering the effect of secondary phase precipitate due to impinging slip and dislocation pileup.(3) The Tanaka-Mura theory of fatigue-crack-initiation from notches was applied to simulate the crack initiation from another crack tip.(4) The coalescence of random initiated micro-cracks was simulated once they intersected with each other and a macro-crack was finally formed.The calculated results were in good agreement with the experimental data which verified the rationality of the simulation model.The applicability of the proposed model for treating fatigue-crack-initiation life in engineering structures was preliminarily achieved.
A simplified three-dimensional numerical model was presented to simulate the micro-crack nucleation and growth to some predefined dimension(approximately 0.38 mm) on the throat surface of a Ni-base powder metallurgy(PM) specimen.The numerical simulation of micro-crack initiation was based on the Tanaka-Mura micro-crack initiation models,where individual grains of the mesoscopic model were simulated using the Voronoi tessellation.Four improvements were made in the model.(1) Considering crack initiation along with 12 principal slip systems on octahedral slip planes of face centered cubic(FCC) crystal in three-dimensional(3-D) models.(2) Considering the effect of secondary phase precipitate due to impinging slip and dislocation pileup.(3) The Tanaka-Mura theory of fatigue-crack-initiation from notches was applied to simulate the crack initiation from another crack tip.(4) The coalescence of random initiated micro-cracks was simulated once they intersected with each other and a macro-crack was finally formed.The calculated results were in good agreement with the experimental data which verified the rationality of the simulation model.The applicability of the proposed model for treating fatigue-crack-initiation life in engineering structures was preliminarily achieved.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2012年第12期2778-2785,共8页
Journal of Aerospace Power
关键词
信号模拟
动力系统
数字化
3D模型
fatigue-crack-initiation
numerical simulation
slip system
powder metallurgy
Voronoi tessellation