期刊文献+

人工胰岛素泵生理系统全局指数渐近稳定性与血糖稳定 被引量:3

Global Exponential Asymptotic Stability of Artificial Pancreas Physiological System and Glucose Stability
下载PDF
导出
摘要 研究了人工胰岛素泵实现血糖水平稳定性问题.首先证明了该生理系统解的正有界性.由于构造合适的Lyapunov泛函比较困难,采用了新的方法,把该非线性时滞系统转化为系数时变线性时滞系统,构造Lyapunov泛函并利用Razumikhin定理得到了其唯一平衡点的全局指数渐近稳定性条件.结果表明,当技术时滞τ1充分小时,全局指数渐近稳定,血糖水平稳定,易于达到疗效. The stability problem of glucose level was considered by artificial pancreas.At first,the positivity and boundness of this physiological system were proven.Due to the difficulty of the appropriate Lyapunov functional construction,the new approach was employed.The nonlinear DDEs were transformed into the linear DDEs with the time-dependent coefficients.Then the Lyapunov functional was constructed and the global exponential asymptotic stability conditions of the unique equilibrium were obtained by the Razumikhin Theorem.The result showed that if the technolgical delay τ1 was sufficiently small,the global exponential asymptotic stability and the glucose stability were obtained.Its clinical efficiency could be easily obtained.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2012年第4期50-54,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号10702065
关键词 人工胰岛素泵 糖尿病 生理模型 全局稳定性 血糖稳定 artificial pancreas diabetes physiological model global stability glucose stability
  • 相关文献

参考文献14

  • 1The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus[J].New England Journal of Medicine,1993,(14):977-986.
  • 2Engelborghs K,Lemaire V,Belair J. Numerical bifurcation analysis of delay differential equations arising from physiological modeling[J].Journal of Mathematical Biology,2001,(04):361-385.
  • 3Li J,Kuang Y,Mason C C. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays[J].Journal of Theoretical Biology,2006,(03):722-735.
  • 4Sturis J,Polonsky K S,Mosekilde E. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose[J].American Physiological Society,1991,(05):801-809.
  • 5Li Jiaxu,Kuang Yang. Analysis of a model of the glucose-insulin regulatory system with two delays[J].SIAM Journal of Applied Mathematics,2007,(03):757-776.
  • 6Tolic I M,Mosekilde E,Sturis J. Modeling the insulin-glucose feedback system:the significance of pulsatile insulin secretion[J].Journal of Theoretical Biology,2000,(03):361-375.
  • 7Moore M C,Connolly C C,Cherrington A D. Autoregulation of hepatic glucose production[J].European Journal of Endocrinology,1998,(03):240-248.
  • 8DeFronzo R A,Ferrannini E. Regulation of hepatic glucose metabolism in humans[J].Diabetes/Metabolism Reviews,1987,(02):415-459.
  • 9Xu Jian,Pei Lijun. Effects of technological delay on insulin and blood glucose in a physiological model[J].International Journal of Non-Linear Mechanics,2010.628-633.
  • 10Pei Lijun,Wang Qingyun,Shi Hongtao. Bifurcation dynamics of the modified physiological model of artificial pancreas with insulin secretion delay[J].Nonlinear Dynamics,2011,(03):417-427.

二级参考文献16

  • 1赵碧蓉,江明辉,沈轶.随机时滞神经网络的全局指数稳定性[J].控制理论与应用,2005,22(5):799-801. 被引量:9
  • 2陈武华,卢小梅,李群宏,关治洪.随机Hopfield时滞神经网络均方指数稳定性:LMI方法[J].数学物理学报(A辑),2007,27(1):109-117. 被引量:9
  • 3杨德刚.一种新的时滞细胞神经网络全局渐近稳定性准则[J].重庆师范大学学报(自然科学版),2007,24(3):46-50. 被引量:6
  • 4Fridman E, Shaked U. An improved stabilization method for linear time-delay systems[J]. IEEE Trans Automat, 2002, 47:1931-1937.
  • 5Fridman E, Shaked U. Delay-dependent stability and H control: constant and time-varying delays[J]. Int J Control, 2003,76(1) :48-60.
  • 6Fridman E , Shaked U. Parameter dependent stability and stabilization of uncertain time-delay systems[J]. IEEE Trans Automat,2003, 48: 861-866.
  • 7Xu Junpin ,Dao ying, Cao Yongyan. Delay-independent and delay-dependent stability of a novel delayed neural networks by Lyapunov functional based approaehes[C]//Proeeedings of the 2006 American Control Conference. Minneapolis, 2006 : 3146-3151.
  • 8Singh V. A generalized LMI-based approach to the global asymptotic stability of delayed cellular neural networks[J]. IEEE Trans, 2004, 15:223-225.
  • 9Wan L, Sun J H. Mean square exponential stability of stochastic delayed Hopfield neural networks [ J ]. Phys Lett A, 2006, 343 (4) :306 -318.
  • 10Wang Z D, Shu H S, Fang J A, et al. Robust stability for stochastic delay Hopfield neural networks with time delays[ J]. Nonlin Anal: Real World Appl, 2006,7(5) :1119 -1128.

共引文献6

同被引文献41

  • 1陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009.
  • 2宋新宇,郭红建,师向云.脉冲微分方程理论及其应用[M].北京:科学出版社,2011.
  • 3Chan B S, Yu P. Bifurcation analysis in a model of cytotoxic T-lymphocyte response to viral infections [J]. Nonlinear Analysis: Real World Ap- plications, 2012, 13: 64-77.
  • 4Li D, Ma W B. Asymptotic properties of an HIV-1 infection model with time delay [ J ]. Journal of Mathematical Analysis and Applications, 2007, 335 : 683-691.
  • 5Nowak M, Bonhoeffer S, Shaw G M, et al. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations [ J]. Jour- nal of Theoretical Biology, 1997, 184 (2):203-217.
  • 6Song X Y, Neumann A. Global stability and periodic solution of the viral dynamics [ J ]. Journal of Mathematical Analysis and Applications, 2007 , 329 : 281-297.
  • 7Shi X Y, Zhou X Y, Song X Y. Dynamical behavior of a delay virus dynamics model with CTL immune response [ J]. Nonlinear Analysis : Real World Applications, 2010, 11 (3) : 1795-1809.
  • 8Song X Y, Wang S L, Zhou X Y. Stability and Hopf bifurcation for a viral infection model with delayed non-lytic immune response [ J ]. Journal of Computational and Applied Mathematics, 2010, 33: 251-265.
  • 9Song X Y, Zhou X Y, Zhao X. Properties of stability and Hopf bifurcation for a HIV infection model with time delay [ J]. Applied Mathematical Modelling, 2010, 34 (6) : 1511-1523.
  • 10Thieme H R. Mathematics in population biology [ M ]. Princeton : Princeton University, 2003.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部