期刊文献+

Vegetation distribution pattern along altitudinal gradient in subtropical mountainous and hilly river basin, China 被引量:7

Vegetation distribution pattern along altitudinal gradient in subtropical mountainous and hilly river basin, China
原文传递
导出
摘要 Knowledge of vegetation distribution patterns is very important. Their relationships with topography and climate were explored through a geographically weighted regression (GWR) framework in a subtropical mountainous and hilly region, Minjiang River Basin of Fujian in China. The HJ-1 satellite image acquired on December 9, 2010 was utilized and NDVI index was calculated representing the range of vegetation greenness. Proper analysis units were achieved through segregation based on small sub-basins and altitudinal bands. Results indicated that the GWR model was more powerful than ordinary linear least square (OLS) regression in interpreting vegetation-environmental relationship, indicated by higher adjusted R2 and lower Akaike information criterion values. On one side, the OLS analysis revealed dominant positive influence from parameters of elevation and slope on vegetation distribution. On the other side, GWR analysis indicated that spatially, the parameters of topography had a very complex relationship with the vegetation distribution, as results of the various combinations of environmental factors, vegetation composition and also anthropogenic impact. The influences of elevation and slope generally decreased, from strongly positive to nearly zero, with increasing altitude and slope. Specially, most rapid changes of coefficients between NDVI and elevation or slope were observed in relatively flat and low-lying areas. This paper confirmed that the non-stationary analysis through the framework of GWR could lead to a better understanding of vegetation distribution in subtropical mountainous and hilly region. It was hoped that the proposed scale selection method combined with GWR framework would provide some guidelines on dealing with both spatial (horizontal) and altitudinal (vertical) non-stationarity in the dataset, and it could easily be applied in characterizing vegetation distribution patterns in other mountainous and hilly river basins and related research. Knowledge of vegetation distribution patterns is very important. Their relationships with topography and climate were explored through a geographically weighted regression (GWR) framework in a subtropical mountainous and hilly region, Minjiang River Basin of Fujian in China. The HJ-1 satellite image acquired on December 9, 2010 was utilized and NDVI index was calculated representing the range of vegetation greenness. Proper analysis units were achieved through segregation based on small sub-basins and altitudinal bands. Results indicated that the GWR model was more powerful than ordinary linear least square (OLS) regression in interpreting vegetation-environmental relationship, indicated by higher adjusted R2 and lower Akaike information criterion values. On one side, the OLS analysis revealed dominant positive influence from parameters of elevation and slope on vegetation distribution. On the other side, GWR analysis indicated that spatially, the parameters of topography had a very complex relationship with the vegetation distribution, as results of the various combinations of environmental factors, vegetation composition and also anthropogenic impact. The influences of elevation and slope generally decreased, from strongly positive to nearly zero, with increasing altitude and slope. Specially, most rapid changes of coefficients between NDVI and elevation or slope were observed in relatively flat and low-lying areas. This paper confirmed that the non-stationary analysis through the framework of GWR could lead to a better understanding of vegetation distribution in subtropical mountainous and hilly region. It was hoped that the proposed scale selection method combined with GWR framework would provide some guidelines on dealing with both spatial (horizontal) and altitudinal (vertical) non-stationarity in the dataset, and it could easily be applied in characterizing vegetation distribution patterns in other mountainous and hilly river basins and related research.
出处 《Journal of Geographical Sciences》 SCIE CSCD 2013年第2期247-257,共11页 地理学报(英文版)
基金 National Natural Science Foundation of China, No.41071207 No.41001254 Scientific Research Foundation for Returned Scholars, No.[20121940, Project from Ministry of Education of China and Science Foundation of Fujian Province, No.201210005 No.2012J01167 Research Foundations from Fuzhou University, No.2009-XQ-19
关键词 VEGETATION altitudinal gradient GWR NON-STATIONARY Minjiang River Basin vegetation altitudinal gradient GWR non-stationary Minjiang River Basin
  • 相关文献

参考文献3

二级参考文献32

共引文献19

同被引文献62

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部