期刊文献+

The Cauchy problem of generalized Landau-Lifshitz equation into S^n 被引量:2

The Cauchy problem of generalized Landau-Lifshitz equation into S^n
原文传递
导出
摘要 In this paper,we study the Cauchy problem of an integrable evolution system,i.e.,the n-dimensional generalization of third-order symmetry of the well-known Landau-Lifshitz equation.By rewriting this equation in a geometric form and applying the geometric energy method with a forth-order perturbation,we show the global well-posedness of the Cauchy problem in suitable Sobolev spaces. In this paper, we study the Cauchy problem of an integrable evolution system, i.e., the n-dimensional generalization of third-order symmetry of the well-known Landau-Lifshitz equation. By rewriting this equation in a geometric form and applying the geometric energy method with a forth-order perturbation, we show the global well-posedness of the Cauchy problem in suitable Sobolev spaces.
出处 《Science China Mathematics》 SCIE 2013年第2期283-300,共18页 中国科学:数学(英文版)
基金 supported by National Basic Research Program of China(Grant No.2006CB805902)
关键词 generalized Landau-Lifshitz geometric energy method Landau-Lifshitz方程 Cauchy问题 Sobolev空间 广义 几何形状 系统演化 摄动方程 能源法
  • 相关文献

参考文献2

二级参考文献36

  • 1Bejenaru, I., Ionescu, A. D., Kenig, C. E., Tataru, D.: Global SchrSdinger maps in dimensions d ≥ 2: Small data in the critical Sobolev spaces. Annals of Mathematics, 173, 1443-1506 (2011).
  • 2Chang, N., Shatah, J., Uhlenbeck, K.: Schrodinger maps. Comm. Pure Appl. Math., 53, 590-602 (2000).
  • 3Ding, Q.: A note on NLS and the Schodinger flow of ,naps. Phys. Lett. A, 248, 49 54 (1998).
  • 4Ding, W.: On the SchrSdinger Flows, Proc. ICM Beijing, 2002, 283-292.
  • 5Ding, W., Wang, Y.: Local Schr6dinger flow into Kghler manifolds. Sci. China Ser. A, 44(11), 1446 1464 (2001).
  • 6Pang, P., Wang, H., Wang, Y.: Schr6dinger flow on Hermitian locally symmetric spaces. Comm. Anal. Geom., 10(4), 653 -681 (2002).
  • 7Rodnianski, I., Rubinstein, Y. A., Staffilani, G.: On the global well-posedness of the one-dimensional Schrodinger map flow. Analysis & PDE, 2(2), 187-209 (2009).
  • 8Sulem, P., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Comm. Math. Phys., 107, 431-454 (1986).
  • 9Ishimori, Y.: Multi-vortex solutions of a two dimensional nonlinear wave equation. Progr. Theoret. Phys., 72, 33 -37 (1984).
  • 10Kenig, C. E., Nahmod, A.: The Cauchy problem for the hyperbolic-elliptic Ishimori system and Schr6dinger maps. Nonlinearity, 18, 1987-2009 (2005).

共引文献6

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部