期刊文献+

小波标架的稳定性 被引量:4

On the Stability of Wavelet Frames
下载PDF
导出
摘要 在小波分析理论中,标架起着十分重要的作用.对(∈L~2(R)和a>1.b>0,I.Daubechies给出了{a^(j/2)((a~jx—kb):j,k ∈Z}构成L~2(R)的标架的充分条件.近年来,人们对小波标架的稳定性进行了大量研究.首先把Kadec定理推广到高维情形,然后研究当(,{a~j},{k}同时变化时标架的稳定性.特别地,我们给出{a~j}扰动时标架的稳定性. The theory of frames is very important for wavelet analysis. For ( ∈ L^2(R) and a > 1, b > 0, I. Daubechies gave a sufficient condition ensuring {a^(j/2) ((a^j x - kb): j, k ∈ Z } to be a frame for L^2(R). Recently, much effort has spent on the study of the stability of wavelet frames. In this paper, after obtaining a multivariate version of Kadec's 1/4- theorem, we study the stability of wavelet frames when (, {a^j} and {k} have some perturbation simultaneously. In particular, we study the effect of the perturbation to {a^j}.
出处 《数学物理学报(A辑)》 CSCD 北大核心 1999年第2期219-223,共5页 Acta Mathematica Scientia
基金 国家自然科学基金!16971047
关键词 标架 小波 Kadec1/4-定理 稳定性 Frames, Wavelets, Kadec's 1/4-theorem.
  • 相关文献

参考文献5

  • 1周性伟,李勇权.一类不规则小波标架[J].科学通报,1997,42(12):1252-1254. 被引量:3
  • 2Chui C K,Appl Comput Harmonic Anal,1995年,3卷,3期,283页
  • 3龙瑞麟,高维小波分析,1995年
  • 4Chui C K,SIAM J Math Anal,1993年,24卷,1期,263页
  • 5Yong R,An Introduction to Non-Harmonic Fourier Series,1980年

共引文献2

同被引文献25

  • 1YANG Deyun & ZHOU Xingwei Department of Information & Technology, Nankai University, Tianjin 300071, China,Department of Mathematics, Nankai University, Tianjin 300071, China,Department of Computer Science, Taishan College, Taian 271000, China.Irregular wavelet frames on L^2 (R^n)[J].Science China Mathematics,2005,48(2):277-287. 被引量:4
  • 2Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions [ J]. J Math Phys, 1986, 27:1271 ~ 1283.
  • 3Daubechies I, et al. Thewavelet transform,time-frequancy location and signal analysis [J]. IEEE Trans Inform Theory, 1990,36 (5): 961 ~ 1005.
  • 4Cazassa P G, Christensen O. Perturbation of operators and applications of frames theory [J]. Jour Fourier Anal and Appl, 1997, 3(5) :533 ~ 557.
  • 5Zhang Jing. On the stability of wavelet and gabor frames (Riesz bases) [J]. J Fourier Anal and Appl,1999,5(1) :105 ~ 125.
  • 6Duffin R J, Schaeffer A C. A class of nonharmonic Fourier Series [J]. Frans AMS, 1952,72:341 ~ 336.
  • 7Yong R. A Introduction to Nonharmonic Fourie Series [ M]. New York: Acdamic Press, 1980.42 ~ 44.
  • 8WALTER G G. A Sampling Theorem For Wavelet Subspace [ J ]. IEEE Trans. Inform at Theory, 1992, 38( 1 ) : 881 -884.
  • 9XIA X G, ZHANG Z. On Sampling Theorems, Wavelets and Wavelet Transforms [ J ]. IEEE Trans. Signal Process, 1993, 41 ( 3 ) : 524 - 535.
  • 10LIU Y M, WALTER G G. Irregular Sampling in Wavelet Subspaces [ J ]. The Journal of Fourier Analysis and Applications, 1995, 17(2) : 181 - 189.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部