摘要
在小波分析理论中,标架起着十分重要的作用.对(∈L~2(R)和a>1.b>0,I.Daubechies给出了{a^(j/2)((a~jx—kb):j,k ∈Z}构成L~2(R)的标架的充分条件.近年来,人们对小波标架的稳定性进行了大量研究.首先把Kadec定理推广到高维情形,然后研究当(,{a~j},{k}同时变化时标架的稳定性.特别地,我们给出{a~j}扰动时标架的稳定性.
The theory of frames is very important for wavelet analysis. For ( ∈ L^2(R) and a > 1, b > 0, I. Daubechies gave a sufficient condition ensuring {a^(j/2) ((a^j x - kb): j, k ∈ Z } to be a frame for L^2(R). Recently, much effort has spent on the study of the stability of wavelet frames. In this paper, after obtaining a multivariate version of Kadec's 1/4- theorem, we study the stability of wavelet frames when (, {a^j} and {k} have some perturbation simultaneously. In particular, we study the effect of the perturbation to {a^j}.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1999年第2期219-223,共5页
Acta Mathematica Scientia
基金
国家自然科学基金!16971047