期刊文献+

局地强迫激发的非线性长波扰动(英文) 被引量:9

NONLINEAR LONG-WAVE DISTURBANCES EXCITED BY LOCALIZED FORCING 
下载PDF
导出
摘要 利用扰动法导得了非线性强迫Boussinesq方程 ,利用数值解讨论了地形和外源等局地强迫激发的非线性长波扰动的一般性状和时间演变特征 ,并对移动性孤波与地形的相互作用进行了分析研究。 It generalizes the theory developed by Helfrich and Pedlosky [1] for time\|dependent coherent structures in a marginally stable zonal flow by including forcing.Such forcing could be due to topography or to an external source.By using a perturbation method,the nonlinear differential equation is obtained for governing the evolution of a disturbance excited by those forcings.Some general features of the excited disturbance are given by numerically solving the governing equation.It further studies the interaction between solitary wave and topography and reveals that the solitary wave can always climb over the topography,but depending on the initial conditions of solitary wave and the height of topography,the initial solitary wave could keep most of its mass or be fissioned into two solitary waves traveling in opposite directions. [
出处 《计算物理》 CSCD 北大核心 2000年第3期259-267,共9页 Chinese Journal of Computational Physics
关键词 局地强迫 弧波 非线性长波扰波 大气 localized forcing solitary wave forced boussinesq equation [CLC number] P433[Document code]\ A
  • 相关文献

参考文献3

  • 1[1]Helfrich K R, Pedlosky J. Time-dependent isolated anomalies in Zonal flows [J]. Fluid Mech, 1993,251:377~409
  • 2[2]Pedlosky J. Grophysical Fluid Dynamics[M]. (Springer Verlag, Berlin and New York, 1979, 624P).
  • 3[3]Fornberg B, Whitham G B. A numerical and theorefical stady of certain nonlinear wave phenomena[J]. Phil Trans Roy Soc, London ,1978, A289, 373.

同被引文献35

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部