摘要
由力学平衡方程导出了旋转对称贮箱内静液面的二阶非线性常微分方程 ,接着具体推出了球腔、旋转椭球腔、柱面腔的边界接触角条件 ,最后使用Runge Kutta法在计算机上得出了数值结果 ,绘出了静液面形状曲线 ,分析了算法特点。
By equilibrium equation of mechanics, the equation of static fluid surface in revolving symmtrical tank under low gravity has been derived. Boundary condition of contact angle is given. Finally, using Runge\|Kutta method, numerical results are attained with the shape of static fluid surface drawn by the computer. Features of the computing method are analysed as well. [
出处
《计算物理》
CSCD
北大核心
2000年第3期273-279,共7页
Chinese Journal of Computational Physics
基金
国家自然科学基金!资助项目 (19332 0 2 0 )
关键词
微重
R-K法
静液面方程
数值解
low gravity condition
contact angle
Bond number
shape of static liquid surface