期刊文献+

耦合映像系统的最大Lyapunov指数 被引量:5

THE LARGEST LYAPUNOV EXPONENT OF COUPLED MAP LATTICE SYSTEMS
原文传递
导出
摘要 对logistic 耦合映像的最大Lyapunov 指数研究发现: 在混沌区参数内, 在系统尺度足够大而耦合强度具有较大值时, 系统的最大Lyapunov 指数存在一个不随尺度和耦合强度变化的平台. Based on the investigation of the largest Lyapunov exponent of coupled map lattice systems, it is found that in the parameter region of chaos, if the system is large enough and the coupling coefficient is neither too small nor too large, the largest Lyapunov exponent of the system has a plateau which does not vary with the size and the coupling coefficient. The physical meaning of this flat plateau is discussed.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2000年第1期24-29,共6页 Acta Physica Sinica
  • 相关文献

参考文献5

  • 1Xie F G,Phys Rev E,1996年,54卷,3235页
  • 2Yang W M,Phys Rev Lett,1996年,76卷,1808页
  • 3Xie F G,Phys Rev E,1995年,52卷,R1页
  • 4Qu Zhilin,Phys Rev E,1994年,50卷,163页
  • 5杨维明,博士学位论文,1991年

同被引文献32

  • 1方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展,1996,16(2):137-202. 被引量:117
  • 2TOKUDA I, NAGASHIMA T, AIHARA K. Global bifurcation structure of chaotic neural networks and its application to traveling salesman problem [J].Neural Networks, 1997, 10(9): 1673-1690.
  • 3CHEN L, AIHARA K. Simulated annealing by a neural network model with transient chaos[J]. Neural Networks, 1995, 8 (6): 915-930.
  • 4SOLO R V, PRIDA L de La. Controlling chaos in discrete neural network [J]. Phys Lett A, 1995, 199(1): 65-69.
  • 5FREEMAN W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system [J]. Biological Cybernetics, 1987, 56: 139-150.
  • 6YAO Y, FREEMAN W J. Model of biological pattern recognition with spatial chaotic dynamics [J].Neural Networks,1990, 3 (2) :153-170.
  • 7WOLF A, SWLFT J B, SWINNEY H L,et al. Determining Lyapunov exponents from a time series[J].Physica D,1985, 16(3):285-317.
  • 8AIHARA K, TAKABE T, TOYODA M. Chaotic neural networks[J]. Phys Lett A, 1990,144 (6-7):333-340.
  • 9ADACHI M, AIHARA K. Associative dynamics in a chaotic neural network [J]. Neural Networks, 1997,10(1): 83-98.
  • 10SHIMADA I, NAGASHIMA T. A numerical approach to ergodic problem of dissipative dynamical systems[J]. Progress of Theoretical Physics, 1979,61(6):1605-1616.

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部