期刊文献+

基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真 被引量:10

Numerical Simulation of Fatigue-crack-initiation Life for Turbine Disk Based on Material Microcosmic Characteristics
原文传递
导出
摘要 为了研究材料微观特性对结构疲劳寿命的影响,根据Tanaka-Mura疲劳裂纹萌生寿命计算理论,模拟某镍基粉末合金涡轮盘喉道表面疲劳裂纹萌生寿命。利用泰森多边形生成法,模拟微观多晶结构,建立宏-细观模型相结合的三维仿真模型。实现3项关键技术:1)在三维模型中模拟了面心立方晶体中{111}面族的12条主滑移系;2)应用缺口根部裂纹萌生的Tanaka-Mura理论模型模拟一条微裂纹在另一条裂纹尖端萌生;3)模拟了微裂纹的起裂、扩展与联合过程,最终形成一条宏观裂纹。对某表面带刀痕涡轮盘疲劳裂纹萌生寿命数值仿真结果与真盘试验结果相差20%。研究表明,减小晶粒尺寸、降低表面粗糙度、形成表面压缩残余应变以及析出沉淀颗粒都有利于提高涡轮盘的疲劳裂纹萌生寿命。 To study the influence of material microcosmic characteristics on structural fatigue life,the fatigue-crack-initiation life in the throat surface of a Ni-based sintered alloy turbine disk is simulated based on Tanaka-Mura numerical theory models.A 3D simulation model is established with combined macro-micro models,where the polycrystalline material is simulated using the Voronoi tessellation.Three key techniques are achieved: 1) crack initiation is realized along 12 principal slip systems on {111} octahedral slip planes of face centered cubic(FCC) crystals in 3D models;2) the Tanaka-Mura theory of fatigue crack initiation from notches is applied to simulate crack initiation from another crack tip;3) the process of micro-crack nucleation,propagation and coalescence is simulated,and a macro-crack is finally formed.The simulated fatigue-crack-initiation life of a turbine disk with a nick has a discrepancy of 20%,compared with the turbine disk fatigue testing result.The study indicates that,finer grains,smoother surfaces,compressed surface residual strain,and precipitates are beneficial to the increase of turbine disk fatigue-crack-initiation life.
作者 牟园伟 陆山
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第2期282-290,共9页 Acta Aeronautica et Astronautica Sinica
关键词 疲劳 裂纹萌生 粉末合金 涡轮 数值模型 数值仿真 fatigue crack initiation powder metallurgy turbine numerical model numercal simulation
  • 相关文献

参考文献15

  • 1Shenoy M,Zhang J,Mcdowell D L. Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach[J].Fatigue & Fracture of Engineering Material & Structure,2007,(10):889-904.doi:10.1111/j.1460-2695.2007.01159.x.
  • 2Kwai S C. Roles of microstructure in fatigue crack initiation[J].International Journal of Fatigue,2010,(09):1428-1447.
  • 3Jiashi M,Tresa M P,Jones J W. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature[J].Acta Materialia,2009,(20):5964-5974.doi:10.1016/j.actamat.2009.08.022.
  • 4Tanaka K,Mura T. A dislocation model for fatigue crack initiation[J].Journal of Applied Mechanics,Transactions of the ASME,1981,(01):97-103.
  • 5Hoshide T,Kusuura K. Life prediction by simulation of crack growth in notched components with different microstructures and under multiaxial fatigue[J].Fatigue & Fracture of Engineering Material & Structure,1998,(02):201-213.doi:10.1046/j.1460-2695.1998.00492.x.
  • 6Angelika B F,Huang X Y. Numerical simulation of micro-crack initiation of martensiticsteel under fatigue loading[J].International Journal of Fatigue,2006,(09):963-971.doi:10.1016/j.ijfatigue.2005.08.011.
  • 7Huang X Y,Angelika B F,Michael B. Simplified three-dimensional model for fatigue crack initiation[J].Engineering Fracture Mechanics,2007,(18):2981-2991.doi:10.1016/j.engfracmech.2006.05.027.
  • 8Jezernik N,Kramberger G,Lassen T. Numerical modelling of fatigue crack initiation and growth of martensitic steels[J].Fatigue & Fracture of Engineering Material & Structure,2010,(11):714-723.
  • 9Kramberger J,Jezernik N,G(o)ncz P. Extension of the Tanaka-Mura model for fatigue crack initiation in thermally cut martensitic steels[J].Engineering Fracture Mechanics,2010,(11):2040-2050.
  • 10Tanaka K,Mura T. A theory of fatigue crack initiation at inclusions[J].Metallurgical and Materials Transactions,1982,(01):117-123.

二级参考文献4

共引文献15

同被引文献96

  • 1刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:74
  • 2张彤.飞机蒙皮厚度精确加工的最新技术——以数铣替代化铣的绿色加工工艺[J].教练机,2011(4):25-29. 被引量:11
  • 3张凤戈,张义文,陶宇.镍基粉末高温合金的超声无损检测[J].粉末冶金工业,2004,14(3):16-19. 被引量:7
  • 4北京航空材料研究院. HB/Z34—1998变形高温合金圆饼及盘件超声波检验[S]. 北京: 航空工业出版社, 1998: 1-2.
  • 5Feist W D, Mueller W. Ultrasonic field modelling for complex shaped aerospace components[C]//Proceedings of the 12th World Conference on Non-Destructive Testing, 1989: 1206-1214.
  • 6Feist W D, Mook G, Taylor S, et al. Non-destructive evaluation of manufacturing anomalies in aero-engine rotor disks[C]//16th World Conference on Non-destructive Testing, 2004.
  • 7Abdul-Aziz A, Trudell J J, Baaklini G Y. Finite element design study of a bladed, flat rotating disk to simulate cracking in a typical turbine disk[J]. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, 2005: 298.
  • 8Kryukov I I, Leont'ev S A, Platonov V S, et al. The experience of application of dye penetrant nondestructive testing in diagnostics of gas turbines[J]. Gas Turbine Technologies, 2006, 7: 10-12.
  • 9Kryukov I I, Leont'ev S A, Platonov V S, et al. Testing of discs of turbine rotors of gas compressors with the dye penetrant nondestructive testing technique[J]. Russian Journal of Nondestructive Testing, 2008, 44(8): 542-547.
  • 10Shmelev N G, Gorbatsevich M I, Kryukov I I, et al. Inspection of rotor disks of HPT and LPT of TK-10-4 gas-compressor units by the ultrasonic flaw detection method[J]. Russian Journal of Nondestructive Testing, 2012, 48(1): 15-22.

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部