期刊文献+

100-GeV large scale laser plasma electron acceleration by a multi-PW laser 被引量:4

100-GeV large scale laser plasma electron acceleration by a multi-PW laser
原文传递
导出
摘要 We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≈ 7 ×10^15 c^m-3 with a channel depth An/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 〉/ 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a llr-mm-mrad- level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum energy of 90 GeV. We present three possible design options of laser plasma acceleration (LPA) for reaching a 100-GeV level energy by means of a multi-petawatt laser such as the 3.5-k J, 500-fs PETawatt Aquitane Laser (PETAL) at French Alternative Energies and Atomic Energy Commission (CEA). Based on scaling of laser wakefield acceleration in the quasi-linear regime with the normalized vector potential a0 = 1.4(1.6), acceleration to 100 (130) GeV requires a 30-m-long plasma waveguide operated at the plasma density ne ≈ 7 ×10^15 c^m-3 with a channel depth An/ne = 20%, while a nonlinear laser wakefield accelerator in the bubble regime with a0 〉/ 2 can reach 100 GeV approximately in a 36/a0-m-long plasma through self-guiding. The third option is a hybrid concept that employs a ponderomotive channel created by a long leading pulse for guiding a short trailing driving laser pulse. The detail parameters for three options are evaluated, optimizing the operating plasma density at which a given energy gain is obtained over the dephasing length and the matched conditions for propagation of relativistic laser pulses in plasma channels, including the self-guiding. For the production of high-quality beams with 1%-level energy spread and a llr-mm-mrad- level transverse normalized emittance at 100-MeV energy, a simple scheme based on the ionization-induced injection mechanism may be conceived. We investigate electron beam dynamics and effects of synchrotron radiation due to betatron motion by solving the beam dynamics equations on energy and beam radius numerically. For the bubble regime case with a0 = 4, radiative energy loss becomes 10% at the maximum energy of 90 GeV.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第1期87-101,共15页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.10834008,10974214,60921004,and 51175324) the National"973"Program of China(Nos.2011CB808104,2011CB808100,and 2010CB923203) supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists(No.2010T2G02)
关键词 Electron beams Energy dissipation Laser pulses Particle beam dynamics Plasma accelerators Plasma density Plasma interactions Plasma waves Electron beams Energy dissipation Laser pulses Particle beam dynamics Plasma accelerators Plasma density Plasma interactions Plasma waves
  • 相关文献

同被引文献63

  • 1黄万霞,袁清习,田玉莲,朱佩平,姜晓明,王寯越.同步辐射硬x射线衍射增强成像新进展[J].物理学报,2005,54(2):677-681. 被引量:40
  • 2陈伟,叶艾,任竞骁.高功率激光器电光调Q技术研究[J].光学与光电技术,2007,5(1):27-30. 被引量:6
  • 3K.Nakajima,A.H.Deng,H.Yoshitama,A.M.Hafz,H.Y.Lu,B.F.Shen,J.S.Liu,R.X.Li,Z.Z.Xu.Fre Electron Laser. . 2012
  • 4H.Lu,M.Liu,W.Wang,C.Wang,J.Liu,A.Deng,J.Xu,C.Xia,W.Li,H.Zhang,X.Lu,C.Wang,J.Wang,X.Liang,Y.Leng,B.Shen,K.Nakajima,R.Li,Z.Xu. Applied Physics Letters . 2011
  • 5X.Wang,R.Zgadzaj,N.Fazel,Z.Li,S.A.Yi,X.Zhang,W.Henderson,Y.-Y.Chang,R.Korzekwa,H.-E.Tsai,C.-H.Pai,H.Quevedo,G.Dyer,E.Gaul,M.Martinez,A.C.Bernstein,T.Borger,M.Spinks,M.Donovan,V.Khudik,G.Shvets,T.Ditmire,M.C.Downer. Nature Commun . 2013
  • 6H.T.Kim,K.H.Pae,H.J.Cha,I.J.Kim,T.J.Yu,J.H.Sung,S.K.Lee,T.M.Jeong,J.Lee. Physics Review Letters . 2013
  • 7S.Karsch,J.Osterhoff,A.Popp,T.P.Rowlands-Rees,Z.Major,M.Fuchs,B.Marx,R.H¨orlein,K.Schmid,L.Veisz,S.Becker,U.Schramm,B.Hidding,G.Pretzler,D.Habs,F.Gru¨ner,F.Krausz,S.M.Hooker. New J.Phys . 2007
  • 8N.A.M.Hafz,T.M.Jeong,I.W.Choi,S.K.Lee,K.H.Pae,V.V.Kulagin,J.H.Sung,T.J.Yu,K.-H.Hong,T.Hosokai,J.R.Cary,D.-K.Ko,J.Lee. Nat.Photon . 2008
  • 9J.S.Liu,C.Q.Xia,W.T.Wang,H.Y.Lu,C.Wang,A.H.Deng,W.T.Li,H.Zhang,X.Y.Liang,Y.X.Leng,X.M.Lu,C.Wang,J.Z.Wang,K.Nakajima,R.X.Li,Z.Z.Xu. Physics Review Letters . 2011
  • 10B.B.Pollock,C.E.Clayton,J.E.Ralph,F.Albert,A.Davidson,L.Divol,C.Filip,S.H.Glenzer,K.Herpoldt,W.Lu,K.A.Marsh,J.Meinecke,W.B.Mori,A.Pak,T.C.Rensink,J.S.Ross,J.Shaw,G.R.Tynan,C.Joshi,D.H.Froula. Physics Review Letters . 2011

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部