期刊文献+

基于概念分层的本体组合匹配策略研究 被引量:2

Composition Strategy of Ontology Matching Based on Hierarchic Concept
下载PDF
导出
摘要 在开放式环境下本体一般由不同组织不同领域专家独立开发,为了让本体能够协同工作或者被重复应用,需要通过本体匹配来解决。文章提出的基于概念分层的组合策略的本体匹配策略利用本体概念的层次性特点,降低匹配过程的计算复杂度,通过组合匹配策略解决单一匹配策略的局限性,并提出了基于语义关系对匹配结果进行一致性判定。 In an open environment, ontologies are built by the experts from different fields and different independ- ent development organizations. In order to allow the ontologies to work together or be repeated in different applica- tions, we deem that ontology matching can meet the requirements. Sections 1 through 5 of the full paper explain our composition strategy mentioned in the title; their core consists of: the algorithms are based on hierarchic concepts; ontology matching strategies using the concept of the level of ontology can reduce the computational complexity of the matching process; the algorithm uses a combination of matching strategies to solve the limitations of a single matching strategy, and proposes a relationship based on semantic matching to detect the consistency of the matched results.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第1期14-18,共5页 Journal of Northwestern Polytechnical University
基金 浙江省公益性技术应用研究计划(2012C23040) 2010年浙江省高校优秀青年教师资助项目资助
关键词 本体匹配 组合策略 概念分层 相似性度量 algorithms, calculations, computationalmodels, ontology, schematic diagrams,matching, similarity measurementcomplexity, flowcharting, hierarchical systems, mathematicalsemantics composition strategy, hierarchic concept, ontology
  • 相关文献

参考文献9

  • 1Mao M,Peng Y,Spring M. An Adaptive Ontology Mapping Approach with Neural Network Based Constraint Satisfaction[J].Journal of Web Semantics,2010.
  • 2杨宁,郭雷,方俊,杜亚勤.语义Web作为背景知识的本体匹配[J].西安工业大学学报,2011,31(2):174-178. 被引量:1
  • 3Euzenat J,Meilicke C,Stuckenschmidt H,Shvaiko P,Trojahn C. Ontology Alignment Evaluation Initiative:Six Years of Experience[J].Journal on Data Semantics XV LNCS,2011.158-192.
  • 4Peukert E,Eberius J,Rahm E. AMC A Framework for Modelling and Comparing Matching Systems as Matching Processes[A].2011.
  • 5Ferara A,Montanelli S,Noessner J,Stuckenschmidt H. Benchmarking Matching Applications on the Semantic Web[A].2011.
  • 6Elmeleegy H,Elmagarnid A,Lee J. Leveraging Query Logs for Schema Mapping Generation in UMAP[A].2011.
  • 7Hedeler C,Bellajjame K,Paton N W,Fernandes A A A,Embury S M,Mao L,Guo C. Pay-As-You-Go Mapping Selection in Dataspaces[A].2011.
  • 8Farooq A,Arshad M J,ShahA. A Layered Approach forSimilarity Measurement between Ontologies[J].J0urnal of American Science,2010,(12):69-77.
  • 9Marc Ehrig,Steffen Staab,York Sure. Framework for Ontology Alignment and Mapping[A].2005.

二级参考文献8

  • 1Berners-Lee T,Hendler J,Lassila O.The Semantic Web[J].Scientific American,2001,284 (5):34.
  • 2Shvaiko P,Euzenat J.A Survey of Schema-based Matching Approaches[J].Journal on Data Semantics,2005,19(5):68.
  • 3Gracia J,Lopez V,d'Aquin M,et al.Solving Semantic Ambiguity to Improve Semantic Web Based Ontology Matching[C] //In Proceeding of the ISWC Workshop on Ontology Matching.Busan:ISWC,2007:158.
  • 4W.van Hage,Katrenko S,Schreiber G.A Method to Combine Linguistic Ontology-mapping Techniques[C]//.In Proceeding of ISWC.GaLway:ISWC,2005:259.
  • 5Alani H.Position Paper:Ontology Construction from Online Ontoiogies[C]//In Proceeding of WWW.Edinburgh:WWW,2006:319.
  • 6Ma Y,Hitzler P,Lin Z.Algorithms for Paraconsistent Reasoning with OWL[C]//In Proceedings of the 4th European Semantic Web Conference.Innsbruck,Austria,2007:399.
  • 7Qi G,Pan J.Z,Ji Q.Extending Description Logics with Uncertainty Reasoning in Possibilistic Logic[C]//In the Proceedings of the 9th European Conference on Symbolic and Quantitave Approaches to Reasoning with Uncertainty.Hammamet,Tunisia,2007:828.
  • 8Huang Z,Van Harmelen F,Ten Teije A.Reasoning with Inconsistent Ontologies[C]//In Proceedings of the 19th International Joint Conference on Artificial Intelligence.Edinburgh:UK,2005:454.

同被引文献26

  • 1刘春辰,刘大有,王生生,赵静滨,王兆丹.改进的语义相似度计算模型及应用[J].吉林大学学报(工学版),2009,39(1):119-123. 被引量:8
  • 2Nilsson N. A mobile automation: An application of artificial in- lelligence eehniques[C]. Proceedings of the 1st Int. Joint Con- ference on Artificial Intelligence, Washington D. C, 1969, 2 (1): 509-520.
  • 3Rover M H. Visual obstacle avoidance[C]//International Joint Conference on Artificial Intelligence, Canada: Springer Press, 1981 : 785-790.
  • 4Harris C, Stephens M. A combined corner and edge detector [C]. Fourth Alvey Vision Conference, Manchester, UK, 1988: 147 -151.
  • 5LOWE D G. Object recognition from local scale invariant fea- tures[C]. Proc of International Conference on Computer Vi- sion. Washington DC: IEEE Computer Society, 1999: 1150 -1157.
  • 6Lowe D G. Distinctive image features from scale invariant key- points[J]. International Journal of Computer Vision, 2004, 60( 2 ):91-110.
  • 7Foley T, Sugermen J. KD-tree acceleration structures for a GPU raytracer[C]. HWVS '05 Proceedings of the ACM Sig- graph/Eurographics Conference on Graphics Hardware, 2005: 15- 22.
  • 8Jon Louis BemleyAT-T Bell Laboratories, Murry Hill, et. K- d trees for semidynamic point sets[C]. SCG '90 Proceedings oI the sixth annual symposium on Computational geometry, 1990: 187- 197.
  • 9Kebler C. Similarity measurement in context[C]. Modeling and Using Context Lecture Notes in Computer Science, ? 2007 4635: 277-290.
  • 10Chen C C, Clm H T. Similarity measurement between images [C]. The 29th Annual International Computer Software and Applications Conference, 2005:0730-3150.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部