期刊文献+

带有乘积型多目标权函数的调度谈判问题

Scheduling Bargaining Problem with Multi-Objective Product
原文传递
导出
摘要 在供应链环境下的生产活动中,各成员对所辖资源具有独立的支配权,因此需要合理的机制使得协同调度方案得以实施,以提高供应链整体的效率.研究由具备不同讨价还价能力的成员所组成的供应链,建立了以纳什讨价还价公理体系为基础的调度谈判模型.在装配系统中,讨论两供应商关于交付顺序的协商.为求取纳什谈判解,提出了一类新的以多目标乘积项作为目标函数的调度问题.对于单机型供应商,新问题的计算复杂性尚未确定,设计了一种多项式时间的启发式算法以求得近优解,并通过数值算例进行验证.该谈判模型为供应链中各成员提供了一种合理的调度协调机制. In supply chain manufacturing, cooperation improves the efficiency a lot. On the basis of the Nash bargaining axioms systems, a bargaining model was established to analyze the negotiation between two schedulers with equal autonomy. Under assembly scheduling circumstance, we investigated the bargaining about suppliers delivery sequence. A new multi-objective scheduling problem was set up to find the Nash bargaining solution. Since its computational complexity was still open, we developed a polynomial time heuristic to find a near optimal solution. Numerical instances validated the efficiency. The bargaining model proposed provides a rational mechanism for cooperation between self-seeking participants.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第2期55-60,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(70671057) 山东省自然科学基金(ZR2010GM006)
关键词 供应链调度 协调机制 讨价还价理论 supply chain scheduling cooperation mechanism bargaining theory
  • 相关文献

参考文献19

  • 1Hall N G,Potts C N. Supply chain scheduling:batching and delivery[J].Operations Research,2003,(04):566-584.doi:10.1287/opre.51.4.566.16106.
  • 2Agnetis A,Hall N G,Pacciarelli D. Supply chain scheduling:sequence coordination[J].Discrete Applied Mathematics,2006,(15):2044-2063.doi:10.1016/j.dam.2005.04.019.
  • 3Dawande M,Geismar H N,Hall N G,Sriskandarajah C. Supply chain scheduling:distribution systems[J].Production and Operations Management,2006.243-261.
  • 4Chen Z.-L,Hall N G. Supply Chain Scheduling:conflict and cooperation in assembly systems[J].Operations Research,2007,(06):1072-1089.doi:10.1287/opre.1070.0412.
  • 5Chen Y.-R. Schedule for service stability and supply chain coordination[D].University of TennesseeKnoxville,2009.
  • 6陈荣军,唐国春.装配系统的供应链排序问题[J].数学的实践与认识,2011,41(18):50-56. 被引量:5
  • 7陈荣军,唐国春.同类机的供应链排序[J].系统工程学报,2010,25(1):62-67. 被引量:14
  • 8陈荣军,唐国春.平行机的供应链排序[J].系统科学与数学,2010,30(2):274-282. 被引量:10
  • 9金霁,顾燕红,唐国春.最大完工时间排序的两人合作博弈[J].上海第二工业大学学报,2011,28(1):14-17. 被引量:14
  • 10Gavirneni S,Kapuscinski R,Tayur S. Value of information in capacitated supply chains[J].Management Science,1999,(1):16-24.doi:10.1287/mnsc.45.1.16.

二级参考文献32

  • 1Rowe J, Sivayogan J, Codd A et al. Intelligent retail logistics scheduling. Artificial Intelligence Magazine, 1996, 17(4): 31-40.
  • 2Hall N G, Potts C N. Supply chain scheduling: Batching and delivery. Operations Research, 2003, 51(4): 566-584.
  • 3Agnetis A, Hall N G, Pacciarelli D. Supply chain scheduling: Sequence coordination. Discrete Applied Mathematics, 2006, 54(15): 2044-2063.
  • 4Dawande M, Geismar H N, Hall N G. Supply chain scheduling: Distribution systems. Operations Research, 2007, 47(5): 511-517.
  • 5唐国春.供应链排序的模型和方法.中国运筹学会第八届学术交流会论文集,香港:Global-Link Informatics,2006:495-502.
  • 6柏孟卓,樊保强,唐国春.供应链管理中供应商的排序、分批和发送问题.21世纪中国经济新增长点-现代物流的前沿研究,北京:中国物资出版社,2006.
  • 7Chauhan S S, Eremeev A V, Romanova A A. Approximation of the supply chain scheduling problem. Operations Research Letters, 2005, 33(3): 249-254.
  • 8Chen Z L. Simultaneous job scheduling and resource allocation on parallel machines. Annals of Operations Research, 2004, 129: 135-153.
  • 9Chen Z L, Hall N G. Supply chain scheduling: Conflict and cooperation in assembly systems. Operations Research, 2007, 55: 1072-1089.
  • 10Chen Z L, Vairaktarakis G. Integrated scheduling of production and distribution operations. Management Science, 2005, 51: 614-628.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部