期刊文献+

具有分布时滞和非局部空间效应的合作模型的行波解

Traveling Fronts in Cooperation Model with Distributed Delay and Nonlocal Spatial Effect
原文传递
导出
摘要 考虑并研究了一类具有分布时滞和非局部空间效应影响的合作系统的反应扩散模型.利用Wang,Li和Ruan建立的非局部时滞反应扩散方程组波前解存在性的理论,证明了连接零平衡解和正平衡解的行波解的存在性. In this paper,the author consider and study a reaction-diffusion model with distributed delays and nonlocal spatial effect,which models the interaction between the two species,the adult members of which are in cooperation.We established the existence of traveling wave fronts connecting the zero solution of this equation with the unique positive steady state.The approach used in this paper is the upper-lower solutions technique and the monotone iteration developed by Wang,Li and Ruan for reaction-diffusion systems with spatio-temporal delays.
作者 谢溪庄
出处 《数学的实践与认识》 CSCD 北大核心 2013年第2期251-256,共6页 Mathematics in Practice and Theory
基金 华侨大学科研基金(10HZR25 11HZR16 12BS225)
关键词 分布时滞 非局部空间效应 行波解 合作 Distributed delay nonlocal spatial effect traveling wave fronts cooperation
  • 相关文献

参考文献8

  • 1吴事良,李万同.具有阶段结构的Lotka-Volterra合作系统的稳定性和行波解[J].数学物理学报(A辑),2008,28(3):454-464. 被引量:3
  • 2Gourley S A,Yang Kuang. Wavefronts and global stability in a time-delayed population model with stage structure[J].Proceedings of the Royal Society of London Series A,2003,(459A):1563-1579.
  • 3A1-Omari J,Gourley S A. Monotone traveling fronts in an age-structured reaction diffusion model of a single species[J].Matrix Biology,2002.294-312.
  • 4Al-Omari J,Gourley S A. Stability and traveling fronts in Lotka-Volterra competition models with stage structure[J].SIAM Journal of Applied Mathematics,2003.2063-2086.
  • 5Rui Xu,Chaplain M A J,Davidson F A. Traveling wave and convergence in stagestructured reactiondiffusion competitive models with nonlocal delays[J].Chaos,Solitons and Fractals,2006,(30):974-992.
  • 6谢溪庄,张映辉.一类具有分布时滞和非局部空间效应的合作模型的稳定性[J].数学的实践与认识,2012,24(3):222-228. 被引量:1
  • 7Wu J,Zou X. Travelling wave fronts of reaction-diffusion systems with delay[J].J Dyn Differen Equat,2001.651-687.
  • 8Wang Z C,Li W T,Ruan S. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays[J].Journal of Differential Equations,2006.185-232.

二级参考文献26

  • 1霍海峰,李万同.具有时滞的“食物有限”种群模型的全局吸引和振动[J].数学物理学报(A辑),2005,25(2):158-165. 被引量:3
  • 2Gourley SA, Kuang Y. Wavefronts and global stability in a time delayed population model with stage structure[J]. Proc Roy Soc Lond A 2003; 459: 1563-79.
  • 3Rui Xu, Chaplain M A J, Davidson F A. Traveling wave and convergence in stagestructured reaction diffusion competitive models with nonlocal delays[J]. Chaos, Solitons and Fractals, 2006(30): 974- 992.
  • 4A1-Omari J, Gourley S A. Monotone traveling fronts in an age-structured reaction diffusion model of a single species [J]. Math Biol, 2002, 45: 294-312.
  • 5Redlinger R. Existence theorems for semilinear parabolic systems with functionals[J]. Nonlinear Anal TMA, 1984, 8: 667-682.
  • 6A1-Omari J, Gourley S A. Stability and traveling fronts in Lotka-Vloterra competition models with stage structure[J]. SIAM J Appl Math, 2003, 63: 2063-2086.
  • 7Britton N F. Reaction-diffusion Equations and Their Applications to Biology[M]. New York: Aca- demic, 1986.
  • 8A1-Omari J, Gourley S A. Monotone wave-fronts in a structured population model with distributed maturation delay[J]. IMA J Appl Math, 2005, 1-22.
  • 9Aiello W G, Freedman H I. A time-delay model of species growth with stage structure. Math Biosci, 1990, 101:139-153
  • 10Al-Omari J, Gourley S A. Montone traveling fronts in an age-structured reaction-diffusion model of a single species. J Math Biol, 2002, 45:294-312

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部