期刊文献+

单帧图像的超分辨率重建技术 被引量:2

Super-resolution reconstruction technologyof single-frame images
下载PDF
导出
摘要 本文通过仿真实验研究了单帧低分辨率图像的超分辨率重建技术。首先,阐述了用于单帧超分辨率重建的插值法、IBP法和POCS法,然后通过matlab7.0仿真程序验证了双三次插值法、双线性插值法、POCS法和IBP法,并根据仿真实验的结果分析这些方法重建效果的好坏。实验结果表明,实验结果证明,双线性插值方法的重建结果要优于双三次插值的重建结果;IBP的重建效果要优于POCS方法;对于IBP和POCS来说,2种方法都能获得较好的重建结果,并且用于图像的帧数越多,重建的效果越好;此外,客观评价方法与主观评价方法有时不能获得相同的评价结果,但在多数情况下,客观评价方法都能取得与主观评价方法一致的结果。 The aim of this study was to develop a super-resolution reconstruction technology of singleframe low-resolution images.Firstly,super-resolution reconstruction method of low-resolution images was discussed,namely,about the interpolation,IBP and POCS methods.The methods were then verified by simulation with Matlab 7.0 and the reconstruction effects obtained by these methods were analyzed.The experiment results show that all of the effects obtained by the three methods are better than that before reconstruction,in which the bi-cubic method may have better reconstruction effect than the linear-interpolation,and for IBP and POCS,the more the number of the images was used for reconstruction,the better the effect is.
作者 田青 王蓉
出处 《中国体视学与图像分析》 2012年第4期313-318,共6页 Chinese Journal of Stereology and Image Analysis
关键词 超分辨率重建 IBP POCS 插值 super-resolution IBP POCS interpolation
  • 相关文献

参考文献10

二级参考文献20

  • 1李桐.超分辨率图像重建技术[J].哈尔滨师范大学自然科学学报,2006,22(5):69-71. 被引量:6
  • 2[1]J.Barroso,A.Rafael,et al.Number plate reading using computer vision.In Proc.IEEE International Symposium on Industrial Electronics.Portugal.1997
  • 3[2]R.Parisi,et al.Car Plate Recognition by Neural Networks and Image Processing.In Proc.IEEE ISCAS.USA,1998
  • 4[3]Charl Coetzee,et al.PC Based Number Plate Recognition Systems.In Proc.IEEE International Symposium on Industrial Electronics.1998
  • 5[4]J.Kittler,et al.Minimum Error Thresholding.Pattern Recognition.1986,19 (1)
  • 6[1]Kim S P,Bose N K,Valenzuela H M. Recursive Reconstruction of High-Resolution Image from Noisy Undersampled Multif-rames.IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(6): 1013~1027
  • 7[2]Kim S P, Su W-Y. Recursive High-resolution Reconstruction of Blurred Multiframe Images. In: IEEE Intl. Conf. on Acoustics,Speech,and Signal Processing(ICASSP). Toronto: IEEE Press,1991. 2977~2980
  • 8[3]Tekalp A M,Ozkan M K,Sezan M I. High-resolution Images Reconstruction from Lower-resolution Images Sequences and Space Varying Images Restoration. In: IEEE Intl. Conf. on Acoustics,Speech and Signal Processing (ICASSP). San Francisco: IEEE Press, 1992. 169~ 172
  • 9[4]Patti A J,Sezan M I,Tekalp A M. High-Resolution Image Reconstruction from a Low-resolution Image Sequence in the Presence of Time-varying Motion Blur. In: IEEE Intl. Conf. on Image Processing(ICIP). Austin: IEEE Press,1994. 343~347
  • 10[5]Mehmet K A, Murat T, Sezan M I. POCS-Based Restoration of Space-Varying Blurred Images. IEEE Transactions on Image Processing,1994,3(4) : 450~454

共引文献31

同被引文献30

  • 1Sung Cheol Park, Min Kyu Park, Moon Gi Kang. Super- resolution image reconstruction: a technical overview [ J]. IEEE Signal Processing Magazine, May 2003: 21 - 36.
  • 2Tsai R Y, Thomas Huang. Multiple frame image restora- tion and registration [ J ]. Advances in Computer Vision and Image Processing, Greenwich, CT: JAI Press lnc 1984:317 -339.
  • 3Salari E, Gerchberg B. Super-resolution using an en- hanced Papoulis-Gerchberg cessing, IET, 2012, 6(7): algorithm [ J ]. Image Pro- 959 - 965.
  • 4Yang J, Wright J, Huang T, et al. Image super-resolu- tion as sparse representation of raw image patches [ C ]. Conference on Computer Vision and Pattern Recognition, IEEE, 2008 : 1 - 8.
  • 5Yu Z, Yanning Z, Alan L, et al. Single image super- resolution using deformable patches [ C ]. Computer Vi- sion and Pattern Recognition, 2014 : 2917 - 2924.
  • 6Zhang K, Tao D, Gao X, et al. Learning multiple linear mappings for efficient single image super-resolution[ J ]. Image Processing IEEE Transactions, 2015, 24 ( 3 ) : 846 - 861.
  • 7Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features[ J]. Computer Vision & Image Understanding, 2008, 110(3) :346 -359.
  • 8Fisher M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [ J ]. Comm of the Acm, 1981, 24(6) :726 -740.
  • 9Irani M, Peleg S. Super resolution from image sequence[ C ]. International Conference on Pattern Recognition, 1990:115 - 120.
  • 10Farsiu S, Robinson M D, Elad M, et al. Fast and robust muhiframe super resolution [ J]. Transaction on Image Processing, 2004, 13(10) : 1327 - 1344.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部