期刊文献+

蚁群算法在磁测资料反演解释中的应用 被引量:2

THE APPLICATION OF ANT COLONY ALGORITHM TO THE INVERSION AND INTERPRETATION OF MAGNETIC DATA
下载PDF
导出
摘要 蚁群算法是模拟蚂蚁群体觅食行为的仿真优化算法,在旅行商等组合优化问题中展现出优异的性能,其在磁测资料反演解释中的应用却很少。基于磁测资料反演解释的特点,本文改善了目标函数值与信息素的映射机制,总结出节点划分策略的连续域多变量目标函数优化蚁群算法。并对磁测资料的模型参数反演进行理论模拟,最后应用于澳大利亚南部Iron Mount矿区低空航磁资料的条带状铁矿构建勘查,取得良好应用效果。 Simulating the behavior of ant colony searching for food,the Ant Colony Algorithm is an emulated and optimized algorithm,which demonstrates excellent performance in such combinatorial optimization problems as Traveling Salesman.However,it has not been widely applied to the inversion and interpretation of magnetic data.Based on the characteristics of magnetic data inversion and interpretation,this paper improves the mapping mechanism from objective function value to pheromone and summarizes Ant Colony Algorithm optimizing for continuous and multiple objective function using nodes partition strategy.Satisfactory results were achieved when Ant Colony Algorithm was simulated to inverse the parameters in the synthetic model experiment of magnetic data and was applied to prospect the banded iron formation according to low-altitude aeromagnetic data surveyed at Iron Mount mining area,southern Australia.
出处 《物探与化探》 CAS CSCD 2013年第1期150-154,共5页 Geophysical and Geochemical Exploration
基金 中国地质调查局地质调查工作项目(1212011120195)
关键词 蚁群算法 磁测资料 参数反演 信息素 Iron Mount矿区 Ant Colony Algorithm magnetic data parameters inversion pheromone Iron Mount mining area
  • 相关文献

参考文献15

  • 1段海滨.蚁群算法原理及其应用[M]北京:科学出版社,2005.
  • 2李士勇;陈永强;李研.蚁群算法及其应用[M]哈尔滨:哈尔滨工业大学出版社,2004.
  • 3吴启迪;汪镭.智能蚁群算法及其应用[M]上海:上海科技教育出版社,2004.
  • 4姜长元.蚁群算法的理论及其应用[J].计算机时代,2004(6):1-3. 被引量:20
  • 5Colorni A,Dorigo M,Maniezzo V. Distributed optimization by ant colonies[A].Paris,France:Elsevier Publishing,1991.134-142.
  • 6Colorni A,DorigoM,Maniezzo V. An investigation of some properties of an ant algorithm[A].Bruxelles,Belgium:Elsevier Publishing,1992.509-520.
  • 7Dorigo M,Maniezzo V,Colorni A. Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems Man and Cybernetics,1996,(01):29-41.
  • 8Dorigo M,GambardellaL M. Ant colony system:a cooperative learning approach to the travelling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,(01):53-66.doi:10.1109/4235.585892.
  • 9高尚,钟娟,莫述军.连续优化问题的蚁群算法研究[J].微机发展,2003,13(1):21-22. 被引量:77
  • 10温文波,杜维.蚁群算法概述[J].石油化工自动化,2002,38(1):19-22. 被引量:55

二级参考文献78

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2李守巨,刘迎曦,孙慧玲.基于蚁群算法的含水层参数识别方法[J].岩土力学,2005,26(7):1049-1052. 被引量:10
  • 3段海滨,王道波,于秀芬.蚁群算法的研究进展评述[J].自然杂志,2006,28(2):102-105. 被引量:31
  • 4马良.多准则货郎问题及其算法.运筹学的理论与应用[M].西安:西安电子科技大学出版社,1996.187-192.
  • 5马振华 刘坤林 等.运筹学与最优化理论卷[M].北京:清华大学出版社,1998.254-278.
  • 6[1]Colorni A.Distributed optimization by ant coloni es[R].Proc.of 1st European Conf.Artificial Life.
  • 7[2]Dorigo M,Gianni Di Caro,Thomas Stutzle.Ant algorithms[J].Fut ure Generation Compuer System,2000,16:5-7.
  • 8[3]Dorigo M Luca,Maria Gamberdella.Ant colony for the traveling s alesman problem[R].TR,IRIDIA,1996.
  • 9[4]Dorigo M,Vittorio Maniezzo,Alberto Colorni.The Ant System:optim ization by a colony of cooperating agents[J].IEEE Transactions on systems,Man, and Cybernetics_Part B,1996,26(1):1-13.
  • 10[5]Thomas Stützle,Holger H Hoos.MAX-MIN Ant System[J].Futur e Generation Computer System,2000,16:889-914.

共引文献395

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部