期刊文献+

一种基于小波分频带统计特征的舰船分类识别方法 被引量:3

An Identification Method of Ship Classification Based on Wavelet Frequency Band Statistical Features
下载PDF
导出
摘要 为了有效提高舰船目标的识别率,提出了一种基于小波分频带统计特征的舰船分类识别方法。该方法利用小波变换分别提取了舰船辐射噪声带内信号的小波模极大值和带外信号的分频段能量两类特征,并将两类目标特征的联合量作为舰船的目标特征用以识别舰船目标。同时利用实测海录58组舰船的辐射噪声数据对上述舰船目标特征的分类识别方法进行了验证,结果表明,利用联合特征对目标的检测概率可以达到97%以上。 This paper proposes an identification method of ship classification based on wavelet frequency band statisti-cal features to improve effectively the detection probability of a ship. In this method, the maximum of wavelet modulus for in-band signal of ship-radiated noise and the frequency band energy of outer band signal are extracted, respectively,by using wavelet transform, and the combination of the two target features is used for identifying a ship target. This method is verified by 58 sets of measured data of radiated noise from sea trial, and the results show an improved detec- tion probability of 97%.
出处 《鱼雷技术》 2013年第1期76-80,共5页 Torpedo Technology
关键词 舰船辐射噪声 小波变换 特征提取 目标分类识别 ship-radiated noise wavelet transform feature extraction target classification identification
  • 相关文献

参考文献8

二级参考文献23

  • 1饶贵安,康宜华,陈龙驹,陈铁红,刘双海,杨叔子.一种新的实时小波分析[J].仪器仪表学报,2005,26(2):181-183. 被引量:8
  • 2王俊,陈逢时.一种基于子波变换模极大值的信号重建方法[J].系统工程与电子技术,1996,18(3):7-15. 被引量:7
  • 3王志宇,王宏,李一娜,王旭.小波相关分析在脑-计算机接口系统中的研究[J].仪器仪表学报,2006,27(4):358-362. 被引量:2
  • 4张恂,郭桂蓉,庄钊文.基于多分辨分析的雷达目标识别方法[J].国防科技大学学报,1997,19(2):59-63. 被引量:6
  • 5KRUSIENSKI D J, SELLERS E W, VAUGHAN T M. Common spatio-temporal patterns for the P300 speller [ C ]. Proceedings of the 3rdinternational IEEE EMBS Conference on Neural Engineering, Hawaii, USA, 2007 : 421-424.
  • 6OMORI K, YAMAGUCHI T, INOUE K. Feature extraction from EEG signals in P300 spelling system [ C ]. ICROS-SICE International Joint Conference 2009. Fukuoka International Congress Center, Japan,2009 : 849-852.
  • 7SALVARIS M, SEPULVEDA F. Wavelet and ensemble of FLDs for P300 classification [ C ]. Proceedings of the dth international IEEE EMBS Conference on Neural Engineering, Antalya, Turkay, 2009 : 339-342.
  • 8COSTAGLIOLA S, SENO B D, MATTEUCCI M. Recognition and classification of means of feature extraction P-300s in EEG signals by using wavelet decomposition [ C ]. Proceedings of International Joint Conference on Neural Networks. Atlanta, USA,2009:597-603.
  • 9SELIM A E, WAHED M A, KADAH Y M. Machine learning methodologies in P300 speller brain-computer interface systems[ C]. 26th National Radio Science Conference, Future Univ. , Egypt,2009 : 1-8.
  • 10SERBY H, YOM-TOV E, INBAR G F. An improved P300-based brain computer interface [ J ]. IEEE Trans on Neural System and Rehabilitation Engineering, 2005,13 ( 1 ) : 89-98.

共引文献224

同被引文献31

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部