期刊文献+

求解非线性方程组的蚁群算法 被引量:3

Ant Colony Algorithm for Solving Nonlinear Equations
下载PDF
导出
摘要 研究非线性方程组的求解问题,提高有效性。针对非线性方程数与变量数一致的非线性方程组问题,当方程组是一些强非线性方程组时,传统方法易导致失败,有效率低。为了提高求解强非线性方程组的求解效率,提出一种蚁群算法的求解方法。首先将方程组问题转化为函数优化问题,然后用全局搜索速度快的蚁群算法对函数进行求解,找到最优解,最后通过具体实例进行仿真研究,结果表明蚁群算法的有效性。 Study solving problem of nonlinear equations,and improve effectiveness.According to the same number of nonlinear equation and variable of nonlinear equations,when equations are some strong nonlinear equations,the traditional method easily lead to failure and low efficient.In order to improve the efficiency of solving the strongly nonlinear equations,this paper puts forward a method of calculating the ant colony algorithm.Frist,the equations problem is transformed into a function optimization problem,then take use of ant colony algorithm with quickly global search speed to solve function,and find the optimal solution.Finally do simulation research through the concrete example.
机构地区 新疆大学
出处 《工业控制计算机》 2013年第1期63-64,共2页 Industrial Control Computer
关键词 蚁群算法 非线性方程组 函数寻优 ant colony algorithm,nonlinear system,function optimization
  • 相关文献

参考文献3

二级参考文献11

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 2江泽坚 吴智泉.实变函数论[M].北京:高等教育出版社,1989.18-22.
  • 3侍乐媛.求解非线性方程组的连续极小化方法[J].计算数学,1987,9(4):438-445.
  • 4Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].In:Proc of the 6th Int'l Symposium on Micro Machine and Human Science,Piscataway NJ:IEEE Service Center,1995:39~43
  • 5Wang Xiao-fei.Quasi-Newton Algorithm with Nonmonotonic Trust Region Methods for Nonlinear Equations[J].Journal of Shanghai Normal University(Natural Science),2003 ;32 (2)
  • 6Shi Y,Eberhart R.A Modified Particle Swarm Optimizer[C].In:Proceedings of the IEEE International Conference on Evolutionary Computation,Piscataway NJ:IEEE Press,1998:69~73
  • 7Wolpert D C,Macready M G.NO Free Lunch Theorems for optimization[J].IEEE Trans on Evolutionary Computation,1997; 1 (1):67~82
  • 8Clerc M.The Swarm and the Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization[C].In:Proc CEC 1999,1999:1951~1957
  • 9吴新元.解非线性方程的二阶敛速指数迭代法[J].计算数学,1998,20(4):367-370. 被引量:21
  • 10胡铁松,郭元裕.多目标动态规划的神经网络方法[J].电子学报,1999,27(10):70-73. 被引量:8

共引文献55

同被引文献28

  • 1李广文.射频功率放大器的研究与设计[D].武汉:华中科技大学,2006.
  • 2Mkadem F, Ayed M B, Bounmiza S, et al. Behavioral modeling and digital predistortion of power amplifiers with memory using two hidden layers artificial neural networks [ C ]//Prec of IEEE MrFF-S lntenm- tiona| Microwave Symposium Digest (MTI'). ~ S. |. ] : |EEE Press, 2010,656-659.
  • 3Cui Shigang, Han Shaolong. Ant colony algorithm and its application in solving the traveling salesman problem [ C ]//Proc of Ihe 3 rd Inter- national Conference on Instrumentation, Measurement, Computer, Communication and Control. 2013 : 1200-1203.
  • 4Mickens R E. Truly nonlinear oscillations: harmonic balance, parame- ter expansions,iteration,and averaging methods[ M]. 3rd ed. [ S. 1. ] : World Scientific,2010.
  • 5Ghadimi M, Kaliji H D. Application of the harmonic balance method on nonlinear equations [ J ]. World Applied Sciences Journal ,2013, 22(4) :532-537.
  • 6吴晓雏.求解旅行商问题和非线性方程组的蚁群算法[D].西安:陕西师范大学,2008.
  • 7张安玲,刘雪英.求解非线性方程组的拟牛顿-粒子群混合算法[J].计算机工程与应用,2008,44(33):41-42. 被引量:20
  • 8刘春波,王鲜芳,潘丰.基于蚁群优化算法的支持向量机参数选择及仿真[J].中南大学学报(自然科学版),2008,39(6):1309-1313. 被引量:26
  • 9孙银慧,白振兴,王兵,王强.求解非线性方程组的迭代神经网络算法[J].计算机工程与应用,2009,45(6):55-56. 被引量:9
  • 10虞鸿,包腾飞,刘海泉,徐波.大坝变形的ε-SVR数值模拟[J].水电自动化与大坝监测,2010,34(1):46-50. 被引量:1

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部