期刊文献+

400nm高性能紫光LED的制作与表征(英文)

Fabrication of High-performance 400nm Violet Light Emitting Diode
下载PDF
导出
摘要 利用金属有机物化学气相沉积技术在蓝宝石衬底表面制备了带有p-AlGaN电子阻挡层的400 nm高性能紫光InGaN多量子阱发光二极管。制作了3种紫光LED,分别带有不同p-AlGaN电子阻挡层结构:Al摩尔分数为9%的p-AlGaN电子阻挡层;Al摩尔分数为11%的p-AlGaN电子阻挡层;Al摩尔分数为20%的10对p-AlGaN/GaN超晶格电子阻挡层。带有高浓度Al电子阻挡层的紫光LED的光输出功率高于低浓度Al电子阻挡层的紫光LED。带有10对p-AlGaN/GaN超晶格电子阻挡层的紫光LED的光输出功率获得了极大的提高,在20 mA注入电流时测试得到的光输出功率为21 mW。此外,该LED同时显示了在高注入电流下接近线性的I-L特性曲线和在LED芯片表面均匀的发光强度分布。 High-performance 400 nm violet InGaN multi-quantum-wells light-emitting diodes(LED) with p-AlGaN electron blocking layer were fabricated on sapphire substrate by metal organic chemical vapor deposition technique.Different kinds of p-AlGaN electron blocking layers were grown in three violet LEDs: bulk p-AlGaN with Al mole fraction of 9%,bulk p-AlGaN with Al mole fraction of 11% and super lattice p-AlGaN/GaN with Al mole fraction of 20%.The output power of violet LED with bulk p-AlGaN(11%) is higher than the LED with bulk p-AlGaN(9%).Typically,the output power of the LED with 10 pairs of p-AlGaN/GaN super lattice electron blocking layer has been greatly improved.A LED with an output power of 21 mW at an injection current of 20 mA is achieved.In additional,the LED also shows an almost linear I-L characteristics at high injection current and uniform intensity mapping on LED chip surface.
出处 《发光学报》 EI CAS CSCD 北大核心 2013年第2期225-229,共5页 Chinese Journal of Luminescence
关键词 金属有机物化学气相沉积 紫光发光二极管 GAN发光二极管 电子阻挡层 超晶格 metal organic chemical vapor deposition violet light emitting diodes GaN light emitting diodes electron blocking layer super lattice
  • 相关文献

参考文献12

  • 1Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes[J].Science,1998,(5379):956-961.doi:10.1126/science.281.5379.956.
  • 2Nakamura S,Senoh M,Iwasa N. Superbright Green InGaN single-quantum-well-structure light-emitting diodes[J].Journal of Applied Physics,1995,(10B):1332-1335.
  • 3Mukai T,Morita D,Nakamura S. High-power UV InGaN/AlGaN double-heterostructure LEDs[J].Journal of Crystal Growth,1998,(1/2):778-781.
  • 4Mukai T,Yamada M,Nakamura S. Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes[J].Japanese Journal of Applied Physics,1998,(11B):1358-1361.
  • 5Nakamura S,Senoh M,Nagahama S. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices[J].Japanese Journal of Applied Physics,1997,(02):1568-1571.
  • 6Wang H X,Li H D,Lee Y B. Fabrication of high-performance 370 nm ultraviolet light-emitting diodes[J].Journal of Crystal Growth,2004,(1/2/3):48-52.
  • 7Wierer J J,Fischer A J,Koleske D D. The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices[J].Applied Physics Letters,2010,(05):051107-0511-3.
  • 8Mukai T,Nakamura S. Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates[J].Jpn J Appl Lett,1999,(10):5735-5739.
  • 9Uchida K,Tang T,Goto S. Spiral growth of InGaN/InGaN quantum wells due to Si doping in the barrier layers[J].Applied Physics Letters,1999,(08):1153-1155.
  • 10Guo X,Schubert E F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates[J].Applied Physics Letters,2001,(21):3337-3339.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部