期刊文献+

基于神经网络的多模态控制器设计(英文) 被引量:1

Multi-Mode Controller Designing Based on Neural Networks
下载PDF
导出
摘要 基于神经网络所具有的定性推理和定量数值并行计算能力 ,以及学习记忆能力 ,集成非线性系统的多个特征模型和控制器 ,实现了控制系统的多模态智能控制 .该方法充分结合系统的定性知识和定量数学描述信息 ,实现了参数大范围变化时变系统的良好控制 .最后用该方法对某型激光制导炸弹设计了一多模态控制器 ,仿真结果表明了该方法的优良性能 . A method of intelligent multi mode control is introduced. The scheme is based on the neural networks which integrate multiple modules and controllers of nonlinear time varying system, and also the neural networks' abilities of qualitative reasoning, quantitative numeric reckoning, learning and memorizing. Combining the qualitative knowledge and quantitative mathematical information of system, the approach provides good control over the nonlinear time varying system with wide variation of parameters. Finally, we use this method to the control design of laser guidance missile and the result of the simulation shows that the performance is excellent and this approach is sample and easy to realize.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2000年第3期387-392,共6页 Control Theory & Applications
基金 Foundationitem :supportedbytheNationalNaturalScienceFoundationofChina(6990 4 0 0 4 ) .
关键词 神经网络 多模态控制器 激光制导炸弹 设计 intelligent control system neural networks multi-mode control
  • 相关文献

参考文献8

  • 1[1] Wang Shunhuang and Shu Diqian. Intelligent Control System and Its Application [M]. Beijing:Mechanism Industry Press, 1995
  • 2[2] Cai Zixing and Xu Guangyou. Artificial Intelligence and Its Application [M]. Beijing: Tsinghua University Press, 1997
  • 3[3] Palm R. Robust control by fuzzy sliding model [J]. Automatica,1994,30(9):1429-1437
  • 4[4] Tu Xuyan and Li Yanda. The concepts, models, methods and strategy of intelligent automatic system [A]. Proceedings of Chinese Intelligent Automatic Conference'98 [C], Shanghai:Tongji University, Shanghai, 1998,1-12
  • 5[5] Zeng Guiquan. The Application of Lyapunov Direct Method in Automatic Control [M]. Shanghai: Shanghai Science and Technology Press,1985
  • 6[6] Asriel U L and Kumpati S N. Control of nonlinear dynamical systems using neural networks part Ⅱ: observability, identification and control [J]. IEEE Trans. Neural Networks, 1996,7(1):30-42
  • 7[7] Huang S H and Endsley M.R. Providing understanding of the Behavior of feed forward neural networks [J]. IEEE Trans. Systems, Man, and Cybernetics, Part B:Cybernetics,1997,27(3):465-474
  • 8[8] NeuroDimension Int. U S. The Construction of Neurosolutions Evolution Version 3.0b8 [CP/CD], 1994-1997

同被引文献18

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部